Properties

Label 2.67.o_gj
Base field $\F_{67}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{67}$
Dimension:  $2$
L-polynomial:  $1 + 14 x + 165 x^{2} + 938 x^{3} + 4489 x^{4}$
Frobenius angles:  $\pm0.553870529958$, $\pm0.740964850216$
Angle rank:  $2$ (numerical)
Number field:  4.0.2359872.4
Galois group:  $D_{4}$
Jacobians:  $96$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $5607$ $20762721$ $90046782756$ $406106385890121$ $1822852567093806927$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $82$ $4624$ $299392$ $20153044$ $1350136042$ $90458597374$ $6060711144430$ $406067629616548$ $27206534892559696$ $1822837804980438304$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 96 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{67}$.

Endomorphism algebra over $\F_{67}$
The endomorphism algebra of this simple isogeny class is 4.0.2359872.4.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.ao_gj$2$(not in LMFDB)