Invariants
This isogeny class is simple and geometrically simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$A(\F_{q^r})$ |
$5607$ |
$20762721$ |
$90046782756$ |
$406106385890121$ |
$1822852567093806927$ |
Point counts of the curve
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
$C(\F_{q^r})$ |
$82$ |
$4624$ |
$299392$ |
$20153044$ |
$1350136042$ |
$90458597374$ |
$6060711144430$ |
$406067629616548$ |
$27206534892559696$ |
$1822837804980438304$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 96 curves (of which all are hyperelliptic):
- $y^2=25 x^6+28 x^5+21 x^4+6 x^3+9 x^2+16 x+1$
- $y^2=58 x^6+23 x^5+36 x^4+53 x^3+47 x^2+57 x+16$
- $y^2=56 x^6+27 x^5+24 x^4+41 x^3+47 x^2+53 x+62$
- $y^2=24 x^6+38 x^5+11 x^4+14 x^3+30 x^2+15 x+59$
- $y^2=4 x^6+49 x^5+52 x^4+14 x^2+28 x+20$
- $y^2=48 x^6+52 x^5+40 x^4+44 x^3+30 x^2+37 x+34$
- $y^2=64 x^6+45 x^5+31 x^4+10 x^3+30 x^2+47 x+43$
- $y^2=64 x^6+37 x^5+23 x^4+43 x^3+30 x^2+51 x+42$
- $y^2=23 x^6+17 x^5+58 x^4+21 x^2+66 x+53$
- $y^2=13 x^6+63 x^5+45 x^4+20 x^3+42 x^2+46 x+63$
- $y^2=18 x^6+58 x^5+17 x^4+10 x^3+19 x^2+15 x+11$
- $y^2=31 x^6+59 x^5+62 x^4+17 x^3+54 x^2+x+34$
- $y^2=40 x^6+56 x^5+48 x^4+38 x^2+19 x+35$
- $y^2=61 x^6+4 x^5+21 x^4+24 x^3+43 x^2+11 x+40$
- $y^2=52 x^6+32 x^5+35 x^4+19 x^3+22 x^2+16 x+20$
- $y^2=18 x^6+65 x^5+52 x^4+21 x^3+27 x^2+41 x+42$
- $y^2=27 x^6+34 x^5+x^4+34 x^3+39 x^2+21 x+64$
- $y^2=2 x^6+55 x^5+17 x^4+63 x^3+62 x^2+25 x+50$
- $y^2=30 x^6+35 x^5+6 x^4+17 x^3+14 x^2+39 x+28$
- $y^2=56 x^6+51 x^5+37 x^4+62 x^3+3 x^2+14 x+26$
- and 76 more
- $y^2=59 x^6+26 x^5+35 x^4+34 x^3+13 x^2+31 x+22$
- $y^2=22 x^6+66 x^5+59 x^4+55 x^3+52 x^2+46 x+49$
- $y^2=13 x^6+34 x^5+21 x^4+27 x^3+59 x^2+x+58$
- $y^2=42 x^6+13 x^5+54 x^4+59 x^3+28 x^2+51 x+35$
- $y^2=30 x^6+25 x^5+27 x^4+58 x^3+54 x^2+17 x+14$
- $y^2=50 x^6+30 x^5+40 x^4+12 x^3+15 x^2+17 x+36$
- $y^2=16 x^6+33 x^5+35 x^4+59 x^3+38 x^2+3 x+12$
- $y^2=9 x^6+2 x^5+6 x^4+12 x^3+38 x^2+2 x+33$
- $y^2=35 x^6+59 x^5+20 x^4+12 x^3+20 x^2+59 x+19$
- $y^2=21 x^6+51 x^5+37 x^4+36 x^3+18 x^2+61 x+59$
- $y^2=63 x^6+49 x^5+11 x^4+30 x^3+6 x^2+46 x+62$
- $y^2=63 x^6+46 x^5+14 x^4+44 x^3+33 x^2+8 x+7$
- $y^2=55 x^6+28 x^5+42 x^4+35 x^3+43 x^2+5 x+44$
- $y^2=45 x^6+29 x^5+22 x^4+26 x^3+13 x^2+4 x+19$
- $y^2=34 x^6+56 x^5+24 x^4+44 x^3+59 x^2+11 x+59$
- $y^2=64 x^6+21 x^5+60 x^4+19 x^3+36 x+40$
- $y^2=11 x^6+29 x^5+23 x^4+48 x^3+12 x^2+42 x+16$
- $y^2=55 x^6+28 x^5+29 x^4+40 x^3+54 x^2+52 x+39$
- $y^2=13 x^6+29 x^5+37 x^4+39 x^3+6 x^2+2 x+29$
- $y^2=10 x^6+20 x^5+41 x^4+24 x^3+64 x^2+60 x+53$
- $y^2=35 x^6+19 x^5+26 x^4+60 x^3+10 x^2+41 x+11$
- $y^2=49 x^6+19 x^5+61 x^4+53 x^3+58 x^2+30 x+15$
- $y^2=11 x^6+37 x^5+48 x^4+16 x^3+55 x^2+33 x+50$
- $y^2=52 x^6+23 x^5+31 x^4+44 x^3+44 x^2+64$
- $y^2=40 x^6+6 x^5+61 x^4+65 x^3+53 x^2+55 x+12$
- $y^2=26 x^6+37 x^5+56 x^4+14 x^3+42 x^2+19 x+22$
- $y^2=49 x^6+37 x^5+28 x^4+62 x^3+10 x^2+47 x+55$
- $y^2=28 x^6+16 x^5+31 x^4+48 x^3+60 x^2+10 x+29$
- $y^2=32 x^6+65 x^5+40 x^4+20 x^3+46 x^2+37 x+2$
- $y^2=61 x^6+13 x^5+32 x^4+45 x^3+45 x^2+51 x+35$
- $y^2=25 x^6+63 x^5+x^4+7 x^3+58 x^2+5 x+17$
- $y^2=44 x^6+56 x^5+62 x^4+18 x^3+50 x^2+51 x+13$
- $y^2=47 x^6+64 x^5+21 x^4+33 x^3+35 x^2+18 x+8$
- $y^2=14 x^6+40 x^5+2 x^4+19 x^3+27 x^2+65 x+60$
- $y^2=49 x^6+40 x^5+20 x^4+38 x^3+61 x^2+48 x+21$
- $y^2=5 x^6+24 x^5+62 x^4+25 x^3+37 x^2+12 x+50$
- $y^2=21 x^6+30 x^5+21 x^4+40 x^3+65 x^2+10 x+39$
- $y^2=46 x^6+63 x^4+56 x^3+13 x^2+40 x+22$
- $y^2=52 x^6+12 x^5+49 x^4+62 x^3+51 x^2+41 x+40$
- $y^2=20 x^6+56 x^5+9 x^4+30 x^3+30 x^2+4 x+28$
- $y^2=26 x^6+66 x^5+42 x^4+16 x^3+34 x^2+2 x+1$
- $y^2=47 x^6+31 x^5+21 x^4+15 x^3+31 x^2+25 x+4$
- $y^2=50 x^6+8 x^5+47 x^4+19 x^3+57 x^2+6 x+27$
- $y^2=29 x^6+23 x^5+3 x^4+32 x^3+24 x^2+55 x+8$
- $y^2=51 x^6+18 x^5+2 x^4+54 x^3+48 x^2+5 x+39$
- $y^2=53 x^6+29 x^5+29 x^4+25 x^3+46 x^2+26 x+55$
- $y^2=4 x^6+57 x^5+54 x^4+9 x^3+42 x^2+21 x+29$
- $y^2=62 x^6+10 x^5+47 x^4+57 x^3+18 x^2+x+20$
- $y^2=12 x^6+52 x^5+44 x^4+28 x^3+53 x^2+29 x+39$
- $y^2=34 x^6+22 x^5+57 x^4+49 x^3+50 x^2+48 x+3$
- $y^2=65 x^6+38 x^5+18 x^4+49 x^3+34 x^2+46 x+30$
- $y^2=4 x^6+22 x^5+41 x^4+33 x^3+52 x^2+14 x+9$
- $y^2=33 x^6+23 x^5+52 x^4+11 x^3+41 x^2+37 x+59$
- $y^2=25 x^6+14 x^5+45 x^4+4 x^3+58 x^2+x+13$
- $y^2=6 x^6+43 x^5+30 x^4+11 x^3+19 x^2+47 x+43$
- $y^2=63 x^6+57 x^5+4 x^4+48 x^3+53 x^2+52 x+20$
- $y^2=22 x^6+50 x^4+58 x^3+58 x^2+5 x+55$
- $y^2=62 x^6+29 x^5+63 x^4+16 x^3+17 x^2+29 x+45$
- $y^2=6 x^6+46 x^5+21 x^4+17 x^3+52 x^2+56 x+16$
- $y^2=24 x^6+12 x^5+47 x^4+30 x^3+23 x^2+14 x+18$
- $y^2=59 x^6+62 x^5+58 x^4+15 x^3+35 x^2+13 x+63$
- $y^2=4 x^6+64 x^5+49 x^4+2 x^3+12 x^2+30 x+19$
- $y^2=18 x^6+60 x^5+62 x^4+23 x^3+38 x^2+19 x+54$
- $y^2=44 x^6+10 x^5+64 x^4+48 x^3+48 x^2+14 x+26$
- $y^2=59 x^6+12 x^5+2 x^4+46 x^3+45 x^2+55 x+51$
- $y^2=21 x^6+57 x^5+36 x^4+46 x^3+33 x^2+36 x+54$
- $y^2=17 x^6+14 x^5+44 x^4+35 x^3+60 x^2+6 x+14$
- $y^2=65 x^6+14 x^5+54 x^4+15 x^3+63 x^2+5 x+47$
- $y^2=38 x^6+12 x^5+60 x^4+45 x^3+14 x^2+33 x+14$
- $y^2=2 x^6+10 x^5+45 x^4+19 x^3+55 x^2+60 x+12$
- $y^2=24 x^6+6 x^5+24 x^4+28 x^3+4 x^2+45 x+36$
- $y^2=14 x^6+36 x^5+36 x^4+11 x^3+61 x^2+18 x+52$
- $y^2=24 x^6+62 x^5+45 x^4+x^3+30 x^2+14 x+23$
- $y^2=16 x^6+42 x^5+22 x^4+6 x^3+22 x^2+40 x+45$
- $y^2=23 x^6+11 x^5+56 x^4+33 x^3+35 x^2+17 x+17$
- $y^2=23 x^6+38 x^5+33 x^4+36 x^3+24 x^2+16 x+66$
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$
The endomorphism algebra of this simple isogeny class is 4.0.2359872.4. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
2.67.ao_gj | $2$ | (not in LMFDB) |