# Curves in abelian variety isogeny class 2.67.o_gj, downloaded from the LMFDB on 13 September 2025. y^2=25*x^6+28*x^5+21*x^4+6*x^3+9*x^2+16*x+1 y^2=58*x^6+23*x^5+36*x^4+53*x^3+47*x^2+57*x+16 y^2=56*x^6+27*x^5+24*x^4+41*x^3+47*x^2+53*x+62 y^2=24*x^6+38*x^5+11*x^4+14*x^3+30*x^2+15*x+59 y^2=4*x^6+49*x^5+52*x^4+14*x^2+28*x+20 y^2=48*x^6+52*x^5+40*x^4+44*x^3+30*x^2+37*x+34 y^2=64*x^6+45*x^5+31*x^4+10*x^3+30*x^2+47*x+43 y^2=64*x^6+37*x^5+23*x^4+43*x^3+30*x^2+51*x+42 y^2=23*x^6+17*x^5+58*x^4+21*x^2+66*x+53 y^2=13*x^6+63*x^5+45*x^4+20*x^3+42*x^2+46*x+63 y^2=18*x^6+58*x^5+17*x^4+10*x^3+19*x^2+15*x+11 y^2=31*x^6+59*x^5+62*x^4+17*x^3+54*x^2+x+34 y^2=40*x^6+56*x^5+48*x^4+38*x^2+19*x+35 y^2=61*x^6+4*x^5+21*x^4+24*x^3+43*x^2+11*x+40 y^2=52*x^6+32*x^5+35*x^4+19*x^3+22*x^2+16*x+20 y^2=18*x^6+65*x^5+52*x^4+21*x^3+27*x^2+41*x+42 y^2=27*x^6+34*x^5+x^4+34*x^3+39*x^2+21*x+64 y^2=2*x^6+55*x^5+17*x^4+63*x^3+62*x^2+25*x+50 y^2=30*x^6+35*x^5+6*x^4+17*x^3+14*x^2+39*x+28 y^2=56*x^6+51*x^5+37*x^4+62*x^3+3*x^2+14*x+26 y^2=59*x^6+26*x^5+35*x^4+34*x^3+13*x^2+31*x+22 y^2=22*x^6+66*x^5+59*x^4+55*x^3+52*x^2+46*x+49 y^2=13*x^6+34*x^5+21*x^4+27*x^3+59*x^2+x+58 y^2=42*x^6+13*x^5+54*x^4+59*x^3+28*x^2+51*x+35 y^2=30*x^6+25*x^5+27*x^4+58*x^3+54*x^2+17*x+14 y^2=50*x^6+30*x^5+40*x^4+12*x^3+15*x^2+17*x+36 y^2=16*x^6+33*x^5+35*x^4+59*x^3+38*x^2+3*x+12 y^2=9*x^6+2*x^5+6*x^4+12*x^3+38*x^2+2*x+33 y^2=35*x^6+59*x^5+20*x^4+12*x^3+20*x^2+59*x+19 y^2=21*x^6+51*x^5+37*x^4+36*x^3+18*x^2+61*x+59 y^2=63*x^6+49*x^5+11*x^4+30*x^3+6*x^2+46*x+62 y^2=63*x^6+46*x^5+14*x^4+44*x^3+33*x^2+8*x+7 y^2=55*x^6+28*x^5+42*x^4+35*x^3+43*x^2+5*x+44 y^2=45*x^6+29*x^5+22*x^4+26*x^3+13*x^2+4*x+19 y^2=34*x^6+56*x^5+24*x^4+44*x^3+59*x^2+11*x+59 y^2=64*x^6+21*x^5+60*x^4+19*x^3+36*x+40 y^2=11*x^6+29*x^5+23*x^4+48*x^3+12*x^2+42*x+16 y^2=55*x^6+28*x^5+29*x^4+40*x^3+54*x^2+52*x+39 y^2=13*x^6+29*x^5+37*x^4+39*x^3+6*x^2+2*x+29 y^2=10*x^6+20*x^5+41*x^4+24*x^3+64*x^2+60*x+53 y^2=35*x^6+19*x^5+26*x^4+60*x^3+10*x^2+41*x+11 y^2=49*x^6+19*x^5+61*x^4+53*x^3+58*x^2+30*x+15 y^2=11*x^6+37*x^5+48*x^4+16*x^3+55*x^2+33*x+50 y^2=52*x^6+23*x^5+31*x^4+44*x^3+44*x^2+64 y^2=40*x^6+6*x^5+61*x^4+65*x^3+53*x^2+55*x+12 y^2=26*x^6+37*x^5+56*x^4+14*x^3+42*x^2+19*x+22 y^2=49*x^6+37*x^5+28*x^4+62*x^3+10*x^2+47*x+55 y^2=28*x^6+16*x^5+31*x^4+48*x^3+60*x^2+10*x+29 y^2=32*x^6+65*x^5+40*x^4+20*x^3+46*x^2+37*x+2 y^2=61*x^6+13*x^5+32*x^4+45*x^3+45*x^2+51*x+35 y^2=25*x^6+63*x^5+x^4+7*x^3+58*x^2+5*x+17 y^2=44*x^6+56*x^5+62*x^4+18*x^3+50*x^2+51*x+13 y^2=47*x^6+64*x^5+21*x^4+33*x^3+35*x^2+18*x+8 y^2=14*x^6+40*x^5+2*x^4+19*x^3+27*x^2+65*x+60 y^2=49*x^6+40*x^5+20*x^4+38*x^3+61*x^2+48*x+21 y^2=5*x^6+24*x^5+62*x^4+25*x^3+37*x^2+12*x+50 y^2=21*x^6+30*x^5+21*x^4+40*x^3+65*x^2+10*x+39 y^2=46*x^6+63*x^4+56*x^3+13*x^2+40*x+22 y^2=52*x^6+12*x^5+49*x^4+62*x^3+51*x^2+41*x+40 y^2=20*x^6+56*x^5+9*x^4+30*x^3+30*x^2+4*x+28 y^2=26*x^6+66*x^5+42*x^4+16*x^3+34*x^2+2*x+1 y^2=47*x^6+31*x^5+21*x^4+15*x^3+31*x^2+25*x+4 y^2=50*x^6+8*x^5+47*x^4+19*x^3+57*x^2+6*x+27 y^2=29*x^6+23*x^5+3*x^4+32*x^3+24*x^2+55*x+8 y^2=51*x^6+18*x^5+2*x^4+54*x^3+48*x^2+5*x+39 y^2=53*x^6+29*x^5+29*x^4+25*x^3+46*x^2+26*x+55 y^2=4*x^6+57*x^5+54*x^4+9*x^3+42*x^2+21*x+29 y^2=62*x^6+10*x^5+47*x^4+57*x^3+18*x^2+x+20 y^2=12*x^6+52*x^5+44*x^4+28*x^3+53*x^2+29*x+39 y^2=34*x^6+22*x^5+57*x^4+49*x^3+50*x^2+48*x+3 y^2=65*x^6+38*x^5+18*x^4+49*x^3+34*x^2+46*x+30 y^2=4*x^6+22*x^5+41*x^4+33*x^3+52*x^2+14*x+9 y^2=33*x^6+23*x^5+52*x^4+11*x^3+41*x^2+37*x+59 y^2=25*x^6+14*x^5+45*x^4+4*x^3+58*x^2+x+13 y^2=6*x^6+43*x^5+30*x^4+11*x^3+19*x^2+47*x+43 y^2=63*x^6+57*x^5+4*x^4+48*x^3+53*x^2+52*x+20 y^2=22*x^6+50*x^4+58*x^3+58*x^2+5*x+55 y^2=62*x^6+29*x^5+63*x^4+16*x^3+17*x^2+29*x+45 y^2=6*x^6+46*x^5+21*x^4+17*x^3+52*x^2+56*x+16 y^2=24*x^6+12*x^5+47*x^4+30*x^3+23*x^2+14*x+18 y^2=59*x^6+62*x^5+58*x^4+15*x^3+35*x^2+13*x+63 y^2=4*x^6+64*x^5+49*x^4+2*x^3+12*x^2+30*x+19 y^2=18*x^6+60*x^5+62*x^4+23*x^3+38*x^2+19*x+54 y^2=44*x^6+10*x^5+64*x^4+48*x^3+48*x^2+14*x+26 y^2=59*x^6+12*x^5+2*x^4+46*x^3+45*x^2+55*x+51 y^2=21*x^6+57*x^5+36*x^4+46*x^3+33*x^2+36*x+54 y^2=17*x^6+14*x^5+44*x^4+35*x^3+60*x^2+6*x+14 y^2=65*x^6+14*x^5+54*x^4+15*x^3+63*x^2+5*x+47 y^2=38*x^6+12*x^5+60*x^4+45*x^3+14*x^2+33*x+14 y^2=2*x^6+10*x^5+45*x^4+19*x^3+55*x^2+60*x+12 y^2=24*x^6+6*x^5+24*x^4+28*x^3+4*x^2+45*x+36 y^2=14*x^6+36*x^5+36*x^4+11*x^3+61*x^2+18*x+52 y^2=24*x^6+62*x^5+45*x^4+x^3+30*x^2+14*x+23 y^2=16*x^6+42*x^5+22*x^4+6*x^3+22*x^2+40*x+45 y^2=23*x^6+11*x^5+56*x^4+33*x^3+35*x^2+17*x+17 y^2=23*x^6+38*x^5+33*x^4+36*x^3+24*x^2+16*x+66