L(s) = 1 | − 2·9-s + 8·13-s − 16·19-s + 8·25-s − 16·43-s + 6·49-s + 24·53-s − 16·59-s + 24·67-s − 5·81-s + 16·89-s − 24·101-s + 16·103-s − 16·117-s + 14·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s + 32·171-s + 173-s + ⋯ |
L(s) = 1 | − 2/3·9-s + 2.21·13-s − 3.67·19-s + 8/5·25-s − 2.43·43-s + 6/7·49-s + 3.29·53-s − 2.08·59-s + 2.93·67-s − 5/9·81-s + 1.69·89-s − 2.38·101-s + 1.57·103-s − 1.47·117-s + 1.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + 2.44·171-s + 0.0760·173-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5345344 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5345344 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.885619007\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.885619007\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.445574525863765866635981482420, −8.692279094981093538957414678098, −8.493464909765807155342515958165, −8.328043564344854417586216527428, −7.86953210115267914392185915874, −6.95932569511754685355581810648, −6.89932973446684652899001487050, −6.34889549183249876808923724279, −6.28130595910653745491946988123, −5.69389425016615310202932764507, −5.37842065511028981237888268256, −4.66426540231248250444074119182, −4.41068115579316540703722703384, −3.84628160144947740861613983374, −3.56380143762130036695747000730, −3.02829970710837481977952053316, −2.27096435274525188889760291453, −2.05341851123593476570882840595, −1.24015693074733944844306163768, −0.49711944476743301157596755531,
0.49711944476743301157596755531, 1.24015693074733944844306163768, 2.05341851123593476570882840595, 2.27096435274525188889760291453, 3.02829970710837481977952053316, 3.56380143762130036695747000730, 3.84628160144947740861613983374, 4.41068115579316540703722703384, 4.66426540231248250444074119182, 5.37842065511028981237888268256, 5.69389425016615310202932764507, 6.28130595910653745491946988123, 6.34889549183249876808923724279, 6.89932973446684652899001487050, 6.95932569511754685355581810648, 7.86953210115267914392185915874, 8.328043564344854417586216527428, 8.493464909765807155342515958165, 8.692279094981093538957414678098, 9.445574525863765866635981482420