Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 12 x + 53 x^{2} )^{2}$ |
$1 - 24 x + 250 x^{2} - 1272 x^{3} + 2809 x^{4}$ | |
Frobenius angles: | $\pm0.191645762723$, $\pm0.191645762723$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $16$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1764$ | $7683984$ | $22218287364$ | $62325593358336$ | $174921386827825764$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $30$ | $2734$ | $149238$ | $7898830$ | $418276590$ | $22164891838$ | $1174713210246$ | $62259687128734$ | $3299763442678974$ | $174887468750014414$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 16 curves (of which all are hyperelliptic):
- $y^2=51 x^6+25 x^5+16 x^3+11 x+26$
- $y^2=30 x^6+25 x^5+9 x^4+46 x^3+10 x^2+42 x+30$
- $y^2=9 x^6+28 x^5+44 x^4+35 x^3+15 x^2+13 x+29$
- $y^2=22 x^6+16 x^5+35 x^4+15 x^3+8 x^2+47 x+39$
- $y^2=34 x^6+5 x^5+35 x^4+46 x^3+35 x^2+5 x+34$
- $y^2=14 x^6+5 x^5+26 x^4+4 x^3+33 x^2+50 x+35$
- $y^2=23 x^6+29 x^5+23 x^4+26 x^3+3 x^2+4 x+26$
- $y^2=42 x^6+18 x^4+18 x^2+42$
- $y^2=23 x^6+4 x^5+23 x^4+24 x^3+x^2+19 x+21$
- $y^2=5 x^6+23 x^5+23 x^4+8 x^3+23 x^2+23 x+5$
- $y^2=33 x^6+2 x^4+2 x^2+33$
- $y^2=50 x^6+46 x^5+36 x^4+14 x^3+13 x^2+28 x+22$
- $y^2=51 x^6+48 x^5+35 x^4+19 x^3+35 x^2+48 x+51$
- $y^2=15 x^6+33 x^5+44 x^4+34 x^3+46 x^2+18 x+16$
- $y^2=14 x^6+5 x^5+13 x^4+43 x^3+42 x^2+34 x+23$
- $y^2=18 x^6+27 x^5+34 x^4+48 x^3+34 x^2+27 x+18$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$The isogeny class factors as 1.53.am 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-17}) \)$)$ |
Base change
This is a primitive isogeny class.