Properties

Label 2.53.ay_jq
Base field $\F_{53}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{53}$
Dimension:  $2$
L-polynomial:  $( 1 - 12 x + 53 x^{2} )^{2}$
  $1 - 24 x + 250 x^{2} - 1272 x^{3} + 2809 x^{4}$
Frobenius angles:  $\pm0.191645762723$, $\pm0.191645762723$
Angle rank:  $1$ (numerical)
Jacobians:  $16$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1764$ $7683984$ $22218287364$ $62325593358336$ $174921386827825764$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $30$ $2734$ $149238$ $7898830$ $418276590$ $22164891838$ $1174713210246$ $62259687128734$ $3299763442678974$ $174887468750014414$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 16 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{53}$.

Endomorphism algebra over $\F_{53}$
The isogeny class factors as 1.53.am 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-17}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.53.a_abm$2$(not in LMFDB)
2.53.y_jq$2$(not in LMFDB)
2.53.m_dn$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.53.a_abm$2$(not in LMFDB)
2.53.y_jq$2$(not in LMFDB)
2.53.m_dn$3$(not in LMFDB)
2.53.a_bm$4$(not in LMFDB)
2.53.am_dn$6$(not in LMFDB)