Properties

Label 2312.2.b.a.577.1
Level $2312$
Weight $2$
Character 2312.577
Analytic conductor $18.461$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2312,2,Mod(577,2312)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2312, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2312.577"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2312 = 2^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2312.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,-10,0,0,0,8,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4614129473\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 136)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 577.1
Root \(-1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 2312.577
Dual form 2312.2.b.a.577.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.82843i q^{3} -1.41421i q^{5} -2.82843i q^{7} -5.00000 q^{9} -2.82843i q^{11} +4.00000 q^{13} -4.00000 q^{15} -8.00000 q^{19} -8.00000 q^{21} +2.82843i q^{23} +3.00000 q^{25} +5.65685i q^{27} -4.24264i q^{29} -8.48528i q^{31} -8.00000 q^{33} -4.00000 q^{35} +7.07107i q^{37} -11.3137i q^{39} -1.41421i q^{41} -8.00000 q^{43} +7.07107i q^{45} -1.00000 q^{49} +12.0000 q^{53} -4.00000 q^{55} +22.6274i q^{57} -8.00000 q^{59} +1.41421i q^{61} +14.1421i q^{63} -5.65685i q^{65} +12.0000 q^{67} +8.00000 q^{69} +8.48528i q^{71} -4.24264i q^{73} -8.48528i q^{75} -8.00000 q^{77} -2.82843i q^{79} +1.00000 q^{81} -12.0000 q^{87} +8.00000 q^{89} -11.3137i q^{91} -24.0000 q^{93} +11.3137i q^{95} +4.24264i q^{97} +14.1421i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 10 q^{9} + 8 q^{13} - 8 q^{15} - 16 q^{19} - 16 q^{21} + 6 q^{25} - 16 q^{33} - 8 q^{35} - 16 q^{43} - 2 q^{49} + 24 q^{53} - 8 q^{55} - 16 q^{59} + 24 q^{67} + 16 q^{69} - 16 q^{77} + 2 q^{81} - 24 q^{87}+ \cdots - 48 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2312\mathbb{Z}\right)^\times\).

\(n\) \(1157\) \(1735\) \(1737\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 2.82843i − 1.63299i −0.577350 0.816497i \(-0.695913\pi\)
0.577350 0.816497i \(-0.304087\pi\)
\(4\) 0 0
\(5\) − 1.41421i − 0.632456i −0.948683 0.316228i \(-0.897584\pi\)
0.948683 0.316228i \(-0.102416\pi\)
\(6\) 0 0
\(7\) − 2.82843i − 1.06904i −0.845154 0.534522i \(-0.820491\pi\)
0.845154 0.534522i \(-0.179509\pi\)
\(8\) 0 0
\(9\) −5.00000 −1.66667
\(10\) 0 0
\(11\) − 2.82843i − 0.852803i −0.904534 0.426401i \(-0.859781\pi\)
0.904534 0.426401i \(-0.140219\pi\)
\(12\) 0 0
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) 0 0
\(15\) −4.00000 −1.03280
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) −8.00000 −1.83533 −0.917663 0.397360i \(-0.869927\pi\)
−0.917663 + 0.397360i \(0.869927\pi\)
\(20\) 0 0
\(21\) −8.00000 −1.74574
\(22\) 0 0
\(23\) 2.82843i 0.589768i 0.955533 + 0.294884i \(0.0952810\pi\)
−0.955533 + 0.294884i \(0.904719\pi\)
\(24\) 0 0
\(25\) 3.00000 0.600000
\(26\) 0 0
\(27\) 5.65685i 1.08866i
\(28\) 0 0
\(29\) − 4.24264i − 0.787839i −0.919145 0.393919i \(-0.871119\pi\)
0.919145 0.393919i \(-0.128881\pi\)
\(30\) 0 0
\(31\) − 8.48528i − 1.52400i −0.647576 0.762001i \(-0.724217\pi\)
0.647576 0.762001i \(-0.275783\pi\)
\(32\) 0 0
\(33\) −8.00000 −1.39262
\(34\) 0 0
\(35\) −4.00000 −0.676123
\(36\) 0 0
\(37\) 7.07107i 1.16248i 0.813733 + 0.581238i \(0.197432\pi\)
−0.813733 + 0.581238i \(0.802568\pi\)
\(38\) 0 0
\(39\) − 11.3137i − 1.81164i
\(40\) 0 0
\(41\) − 1.41421i − 0.220863i −0.993884 0.110432i \(-0.964777\pi\)
0.993884 0.110432i \(-0.0352233\pi\)
\(42\) 0 0
\(43\) −8.00000 −1.21999 −0.609994 0.792406i \(-0.708828\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) 0 0
\(45\) 7.07107i 1.05409i
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 12.0000 1.64833 0.824163 0.566352i \(-0.191646\pi\)
0.824163 + 0.566352i \(0.191646\pi\)
\(54\) 0 0
\(55\) −4.00000 −0.539360
\(56\) 0 0
\(57\) 22.6274i 2.99707i
\(58\) 0 0
\(59\) −8.00000 −1.04151 −0.520756 0.853706i \(-0.674350\pi\)
−0.520756 + 0.853706i \(0.674350\pi\)
\(60\) 0 0
\(61\) 1.41421i 0.181071i 0.995893 + 0.0905357i \(0.0288579\pi\)
−0.995893 + 0.0905357i \(0.971142\pi\)
\(62\) 0 0
\(63\) 14.1421i 1.78174i
\(64\) 0 0
\(65\) − 5.65685i − 0.701646i
\(66\) 0 0
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) 0 0
\(69\) 8.00000 0.963087
\(70\) 0 0
\(71\) 8.48528i 1.00702i 0.863990 + 0.503509i \(0.167958\pi\)
−0.863990 + 0.503509i \(0.832042\pi\)
\(72\) 0 0
\(73\) − 4.24264i − 0.496564i −0.968688 0.248282i \(-0.920134\pi\)
0.968688 0.248282i \(-0.0798659\pi\)
\(74\) 0 0
\(75\) − 8.48528i − 0.979796i
\(76\) 0 0
\(77\) −8.00000 −0.911685
\(78\) 0 0
\(79\) − 2.82843i − 0.318223i −0.987261 0.159111i \(-0.949137\pi\)
0.987261 0.159111i \(-0.0508629\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −12.0000 −1.28654
\(88\) 0 0
\(89\) 8.00000 0.847998 0.423999 0.905663i \(-0.360626\pi\)
0.423999 + 0.905663i \(0.360626\pi\)
\(90\) 0 0
\(91\) − 11.3137i − 1.18600i
\(92\) 0 0
\(93\) −24.0000 −2.48868
\(94\) 0 0
\(95\) 11.3137i 1.16076i
\(96\) 0 0
\(97\) 4.24264i 0.430775i 0.976529 + 0.215387i \(0.0691014\pi\)
−0.976529 + 0.215387i \(0.930899\pi\)
\(98\) 0 0
\(99\) 14.1421i 1.42134i
\(100\) 0 0
\(101\) −12.0000 −1.19404 −0.597022 0.802225i \(-0.703650\pi\)
−0.597022 + 0.802225i \(0.703650\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0 0
\(105\) 11.3137i 1.10410i
\(106\) 0 0
\(107\) 2.82843i 0.273434i 0.990610 + 0.136717i \(0.0436552\pi\)
−0.990610 + 0.136717i \(0.956345\pi\)
\(108\) 0 0
\(109\) − 4.24264i − 0.406371i −0.979140 0.203186i \(-0.934871\pi\)
0.979140 0.203186i \(-0.0651295\pi\)
\(110\) 0 0
\(111\) 20.0000 1.89832
\(112\) 0 0
\(113\) 9.89949i 0.931266i 0.884978 + 0.465633i \(0.154173\pi\)
−0.884978 + 0.465633i \(0.845827\pi\)
\(114\) 0 0
\(115\) 4.00000 0.373002
\(116\) 0 0
\(117\) −20.0000 −1.84900
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 3.00000 0.272727
\(122\) 0 0
\(123\) −4.00000 −0.360668
\(124\) 0 0
\(125\) − 11.3137i − 1.01193i
\(126\) 0 0
\(127\) 4.00000 0.354943 0.177471 0.984126i \(-0.443208\pi\)
0.177471 + 0.984126i \(0.443208\pi\)
\(128\) 0 0
\(129\) 22.6274i 1.99223i
\(130\) 0 0
\(131\) − 2.82843i − 0.247121i −0.992337 0.123560i \(-0.960569\pi\)
0.992337 0.123560i \(-0.0394313\pi\)
\(132\) 0 0
\(133\) 22.6274i 1.96205i
\(134\) 0 0
\(135\) 8.00000 0.688530
\(136\) 0 0
\(137\) 16.0000 1.36697 0.683486 0.729964i \(-0.260463\pi\)
0.683486 + 0.729964i \(0.260463\pi\)
\(138\) 0 0
\(139\) 2.82843i 0.239904i 0.992780 + 0.119952i \(0.0382741\pi\)
−0.992780 + 0.119952i \(0.961726\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 11.3137i − 0.946100i
\(144\) 0 0
\(145\) −6.00000 −0.498273
\(146\) 0 0
\(147\) 2.82843i 0.233285i
\(148\) 0 0
\(149\) −22.0000 −1.80231 −0.901155 0.433497i \(-0.857280\pi\)
−0.901155 + 0.433497i \(0.857280\pi\)
\(150\) 0 0
\(151\) 12.0000 0.976546 0.488273 0.872691i \(-0.337627\pi\)
0.488273 + 0.872691i \(0.337627\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −12.0000 −0.963863
\(156\) 0 0
\(157\) 2.00000 0.159617 0.0798087 0.996810i \(-0.474569\pi\)
0.0798087 + 0.996810i \(0.474569\pi\)
\(158\) 0 0
\(159\) − 33.9411i − 2.69171i
\(160\) 0 0
\(161\) 8.00000 0.630488
\(162\) 0 0
\(163\) − 8.48528i − 0.664619i −0.943170 0.332309i \(-0.892172\pi\)
0.943170 0.332309i \(-0.107828\pi\)
\(164\) 0 0
\(165\) 11.3137i 0.880771i
\(166\) 0 0
\(167\) 14.1421i 1.09435i 0.837018 + 0.547176i \(0.184297\pi\)
−0.837018 + 0.547176i \(0.815703\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) 40.0000 3.05888
\(172\) 0 0
\(173\) 15.5563i 1.18273i 0.806405 + 0.591364i \(0.201410\pi\)
−0.806405 + 0.591364i \(0.798590\pi\)
\(174\) 0 0
\(175\) − 8.48528i − 0.641427i
\(176\) 0 0
\(177\) 22.6274i 1.70078i
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) − 7.07107i − 0.525588i −0.964852 0.262794i \(-0.915356\pi\)
0.964852 0.262794i \(-0.0846440\pi\)
\(182\) 0 0
\(183\) 4.00000 0.295689
\(184\) 0 0
\(185\) 10.0000 0.735215
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 16.0000 1.16383
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) − 4.24264i − 0.305392i −0.988273 0.152696i \(-0.951204\pi\)
0.988273 0.152696i \(-0.0487955\pi\)
\(194\) 0 0
\(195\) −16.0000 −1.14578
\(196\) 0 0
\(197\) − 18.3848i − 1.30986i −0.755689 0.654931i \(-0.772698\pi\)
0.755689 0.654931i \(-0.227302\pi\)
\(198\) 0 0
\(199\) 8.48528i 0.601506i 0.953702 + 0.300753i \(0.0972379\pi\)
−0.953702 + 0.300753i \(0.902762\pi\)
\(200\) 0 0
\(201\) − 33.9411i − 2.39402i
\(202\) 0 0
\(203\) −12.0000 −0.842235
\(204\) 0 0
\(205\) −2.00000 −0.139686
\(206\) 0 0
\(207\) − 14.1421i − 0.982946i
\(208\) 0 0
\(209\) 22.6274i 1.56517i
\(210\) 0 0
\(211\) − 8.48528i − 0.584151i −0.956395 0.292075i \(-0.905654\pi\)
0.956395 0.292075i \(-0.0943458\pi\)
\(212\) 0 0
\(213\) 24.0000 1.64445
\(214\) 0 0
\(215\) 11.3137i 0.771589i
\(216\) 0 0
\(217\) −24.0000 −1.62923
\(218\) 0 0
\(219\) −12.0000 −0.810885
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 4.00000 0.267860 0.133930 0.990991i \(-0.457240\pi\)
0.133930 + 0.990991i \(0.457240\pi\)
\(224\) 0 0
\(225\) −15.0000 −1.00000
\(226\) 0 0
\(227\) 19.7990i 1.31411i 0.753845 + 0.657053i \(0.228197\pi\)
−0.753845 + 0.657053i \(0.771803\pi\)
\(228\) 0 0
\(229\) −18.0000 −1.18947 −0.594737 0.803921i \(-0.702744\pi\)
−0.594737 + 0.803921i \(0.702744\pi\)
\(230\) 0 0
\(231\) 22.6274i 1.48877i
\(232\) 0 0
\(233\) − 7.07107i − 0.463241i −0.972806 0.231621i \(-0.925597\pi\)
0.972806 0.231621i \(-0.0744028\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −8.00000 −0.519656
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 26.8701i 1.73085i 0.501036 + 0.865426i \(0.332952\pi\)
−0.501036 + 0.865426i \(0.667048\pi\)
\(242\) 0 0
\(243\) 14.1421i 0.907218i
\(244\) 0 0
\(245\) 1.41421i 0.0903508i
\(246\) 0 0
\(247\) −32.0000 −2.03611
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.00000 0.252478 0.126239 0.992000i \(-0.459709\pi\)
0.126239 + 0.992000i \(0.459709\pi\)
\(252\) 0 0
\(253\) 8.00000 0.502956
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −22.0000 −1.37232 −0.686161 0.727450i \(-0.740706\pi\)
−0.686161 + 0.727450i \(0.740706\pi\)
\(258\) 0 0
\(259\) 20.0000 1.24274
\(260\) 0 0
\(261\) 21.2132i 1.31306i
\(262\) 0 0
\(263\) −4.00000 −0.246651 −0.123325 0.992366i \(-0.539356\pi\)
−0.123325 + 0.992366i \(0.539356\pi\)
\(264\) 0 0
\(265\) − 16.9706i − 1.04249i
\(266\) 0 0
\(267\) − 22.6274i − 1.38478i
\(268\) 0 0
\(269\) 7.07107i 0.431131i 0.976489 + 0.215565i \(0.0691594\pi\)
−0.976489 + 0.215565i \(0.930841\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 0 0
\(273\) −32.0000 −1.93673
\(274\) 0 0
\(275\) − 8.48528i − 0.511682i
\(276\) 0 0
\(277\) − 21.2132i − 1.27458i −0.770625 0.637289i \(-0.780056\pi\)
0.770625 0.637289i \(-0.219944\pi\)
\(278\) 0 0
\(279\) 42.4264i 2.54000i
\(280\) 0 0
\(281\) 16.0000 0.954480 0.477240 0.878773i \(-0.341637\pi\)
0.477240 + 0.878773i \(0.341637\pi\)
\(282\) 0 0
\(283\) − 14.1421i − 0.840663i −0.907371 0.420331i \(-0.861914\pi\)
0.907371 0.420331i \(-0.138086\pi\)
\(284\) 0 0
\(285\) 32.0000 1.89552
\(286\) 0 0
\(287\) −4.00000 −0.236113
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 12.0000 0.703452
\(292\) 0 0
\(293\) −26.0000 −1.51894 −0.759468 0.650545i \(-0.774541\pi\)
−0.759468 + 0.650545i \(0.774541\pi\)
\(294\) 0 0
\(295\) 11.3137i 0.658710i
\(296\) 0 0
\(297\) 16.0000 0.928414
\(298\) 0 0
\(299\) 11.3137i 0.654289i
\(300\) 0 0
\(301\) 22.6274i 1.30422i
\(302\) 0 0
\(303\) 33.9411i 1.94987i
\(304\) 0 0
\(305\) 2.00000 0.114520
\(306\) 0 0
\(307\) −12.0000 −0.684876 −0.342438 0.939540i \(-0.611253\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(308\) 0 0
\(309\) − 22.6274i − 1.28723i
\(310\) 0 0
\(311\) − 25.4558i − 1.44347i −0.692170 0.721734i \(-0.743345\pi\)
0.692170 0.721734i \(-0.256655\pi\)
\(312\) 0 0
\(313\) − 12.7279i − 0.719425i −0.933063 0.359712i \(-0.882875\pi\)
0.933063 0.359712i \(-0.117125\pi\)
\(314\) 0 0
\(315\) 20.0000 1.12687
\(316\) 0 0
\(317\) − 21.2132i − 1.19145i −0.803188 0.595726i \(-0.796864\pi\)
0.803188 0.595726i \(-0.203136\pi\)
\(318\) 0 0
\(319\) −12.0000 −0.671871
\(320\) 0 0
\(321\) 8.00000 0.446516
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 12.0000 0.665640
\(326\) 0 0
\(327\) −12.0000 −0.663602
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 32.0000 1.75888 0.879440 0.476011i \(-0.157918\pi\)
0.879440 + 0.476011i \(0.157918\pi\)
\(332\) 0 0
\(333\) − 35.3553i − 1.93746i
\(334\) 0 0
\(335\) − 16.9706i − 0.927201i
\(336\) 0 0
\(337\) − 35.3553i − 1.92593i −0.269630 0.962964i \(-0.586901\pi\)
0.269630 0.962964i \(-0.413099\pi\)
\(338\) 0 0
\(339\) 28.0000 1.52075
\(340\) 0 0
\(341\) −24.0000 −1.29967
\(342\) 0 0
\(343\) − 16.9706i − 0.916324i
\(344\) 0 0
\(345\) − 11.3137i − 0.609110i
\(346\) 0 0
\(347\) − 25.4558i − 1.36654i −0.730165 0.683271i \(-0.760557\pi\)
0.730165 0.683271i \(-0.239443\pi\)
\(348\) 0 0
\(349\) −20.0000 −1.07058 −0.535288 0.844670i \(-0.679797\pi\)
−0.535288 + 0.844670i \(0.679797\pi\)
\(350\) 0 0
\(351\) 22.6274i 1.20776i
\(352\) 0 0
\(353\) 2.00000 0.106449 0.0532246 0.998583i \(-0.483050\pi\)
0.0532246 + 0.998583i \(0.483050\pi\)
\(354\) 0 0
\(355\) 12.0000 0.636894
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −4.00000 −0.211112 −0.105556 0.994413i \(-0.533662\pi\)
−0.105556 + 0.994413i \(0.533662\pi\)
\(360\) 0 0
\(361\) 45.0000 2.36842
\(362\) 0 0
\(363\) − 8.48528i − 0.445362i
\(364\) 0 0
\(365\) −6.00000 −0.314054
\(366\) 0 0
\(367\) − 14.1421i − 0.738213i −0.929387 0.369107i \(-0.879664\pi\)
0.929387 0.369107i \(-0.120336\pi\)
\(368\) 0 0
\(369\) 7.07107i 0.368105i
\(370\) 0 0
\(371\) − 33.9411i − 1.76214i
\(372\) 0 0
\(373\) 12.0000 0.621336 0.310668 0.950518i \(-0.399447\pi\)
0.310668 + 0.950518i \(0.399447\pi\)
\(374\) 0 0
\(375\) −32.0000 −1.65247
\(376\) 0 0
\(377\) − 16.9706i − 0.874028i
\(378\) 0 0
\(379\) − 2.82843i − 0.145287i −0.997358 0.0726433i \(-0.976857\pi\)
0.997358 0.0726433i \(-0.0231435\pi\)
\(380\) 0 0
\(381\) − 11.3137i − 0.579619i
\(382\) 0 0
\(383\) −36.0000 −1.83951 −0.919757 0.392488i \(-0.871614\pi\)
−0.919757 + 0.392488i \(0.871614\pi\)
\(384\) 0 0
\(385\) 11.3137i 0.576600i
\(386\) 0 0
\(387\) 40.0000 2.03331
\(388\) 0 0
\(389\) 2.00000 0.101404 0.0507020 0.998714i \(-0.483854\pi\)
0.0507020 + 0.998714i \(0.483854\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −8.00000 −0.403547
\(394\) 0 0
\(395\) −4.00000 −0.201262
\(396\) 0 0
\(397\) − 12.7279i − 0.638796i −0.947621 0.319398i \(-0.896519\pi\)
0.947621 0.319398i \(-0.103481\pi\)
\(398\) 0 0
\(399\) 64.0000 3.20401
\(400\) 0 0
\(401\) 15.5563i 0.776847i 0.921481 + 0.388424i \(0.126980\pi\)
−0.921481 + 0.388424i \(0.873020\pi\)
\(402\) 0 0
\(403\) − 33.9411i − 1.69073i
\(404\) 0 0
\(405\) − 1.41421i − 0.0702728i
\(406\) 0 0
\(407\) 20.0000 0.991363
\(408\) 0 0
\(409\) −10.0000 −0.494468 −0.247234 0.968956i \(-0.579522\pi\)
−0.247234 + 0.968956i \(0.579522\pi\)
\(410\) 0 0
\(411\) − 45.2548i − 2.23226i
\(412\) 0 0
\(413\) 22.6274i 1.11342i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 8.00000 0.391762
\(418\) 0 0
\(419\) − 8.48528i − 0.414533i −0.978285 0.207267i \(-0.933543\pi\)
0.978285 0.207267i \(-0.0664567\pi\)
\(420\) 0 0
\(421\) 20.0000 0.974740 0.487370 0.873195i \(-0.337956\pi\)
0.487370 + 0.873195i \(0.337956\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 4.00000 0.193574
\(428\) 0 0
\(429\) −32.0000 −1.54497
\(430\) 0 0
\(431\) 8.48528i 0.408722i 0.978896 + 0.204361i \(0.0655116\pi\)
−0.978896 + 0.204361i \(0.934488\pi\)
\(432\) 0 0
\(433\) −10.0000 −0.480569 −0.240285 0.970702i \(-0.577241\pi\)
−0.240285 + 0.970702i \(0.577241\pi\)
\(434\) 0 0
\(435\) 16.9706i 0.813676i
\(436\) 0 0
\(437\) − 22.6274i − 1.08242i
\(438\) 0 0
\(439\) − 25.4558i − 1.21494i −0.794342 0.607471i \(-0.792184\pi\)
0.794342 0.607471i \(-0.207816\pi\)
\(440\) 0 0
\(441\) 5.00000 0.238095
\(442\) 0 0
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) 0 0
\(445\) − 11.3137i − 0.536321i
\(446\) 0 0
\(447\) 62.2254i 2.94316i
\(448\) 0 0
\(449\) 18.3848i 0.867631i 0.901002 + 0.433816i \(0.142833\pi\)
−0.901002 + 0.433816i \(0.857167\pi\)
\(450\) 0 0
\(451\) −4.00000 −0.188353
\(452\) 0 0
\(453\) − 33.9411i − 1.59469i
\(454\) 0 0
\(455\) −16.0000 −0.750092
\(456\) 0 0
\(457\) −14.0000 −0.654892 −0.327446 0.944870i \(-0.606188\pi\)
−0.327446 + 0.944870i \(0.606188\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −20.0000 −0.931493 −0.465746 0.884918i \(-0.654214\pi\)
−0.465746 + 0.884918i \(0.654214\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 33.9411i 1.57398i
\(466\) 0 0
\(467\) 8.00000 0.370196 0.185098 0.982720i \(-0.440740\pi\)
0.185098 + 0.982720i \(0.440740\pi\)
\(468\) 0 0
\(469\) − 33.9411i − 1.56726i
\(470\) 0 0
\(471\) − 5.65685i − 0.260654i
\(472\) 0 0
\(473\) 22.6274i 1.04041i
\(474\) 0 0
\(475\) −24.0000 −1.10120
\(476\) 0 0
\(477\) −60.0000 −2.74721
\(478\) 0 0
\(479\) 31.1127i 1.42158i 0.703407 + 0.710788i \(0.251661\pi\)
−0.703407 + 0.710788i \(0.748339\pi\)
\(480\) 0 0
\(481\) 28.2843i 1.28965i
\(482\) 0 0
\(483\) − 22.6274i − 1.02958i
\(484\) 0 0
\(485\) 6.00000 0.272446
\(486\) 0 0
\(487\) 19.7990i 0.897178i 0.893738 + 0.448589i \(0.148073\pi\)
−0.893738 + 0.448589i \(0.851927\pi\)
\(488\) 0 0
\(489\) −24.0000 −1.08532
\(490\) 0 0
\(491\) 24.0000 1.08310 0.541552 0.840667i \(-0.317837\pi\)
0.541552 + 0.840667i \(0.317837\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 20.0000 0.898933
\(496\) 0 0
\(497\) 24.0000 1.07655
\(498\) 0 0
\(499\) 8.48528i 0.379853i 0.981798 + 0.189927i \(0.0608250\pi\)
−0.981798 + 0.189927i \(0.939175\pi\)
\(500\) 0 0
\(501\) 40.0000 1.78707
\(502\) 0 0
\(503\) − 19.7990i − 0.882793i −0.897312 0.441397i \(-0.854483\pi\)
0.897312 0.441397i \(-0.145517\pi\)
\(504\) 0 0
\(505\) 16.9706i 0.755180i
\(506\) 0 0
\(507\) − 8.48528i − 0.376845i
\(508\) 0 0
\(509\) −30.0000 −1.32973 −0.664863 0.746965i \(-0.731510\pi\)
−0.664863 + 0.746965i \(0.731510\pi\)
\(510\) 0 0
\(511\) −12.0000 −0.530849
\(512\) 0 0
\(513\) − 45.2548i − 1.99805i
\(514\) 0 0
\(515\) − 11.3137i − 0.498542i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 44.0000 1.93139
\(520\) 0 0
\(521\) − 43.8406i − 1.92069i −0.278810 0.960346i \(-0.589940\pi\)
0.278810 0.960346i \(-0.410060\pi\)
\(522\) 0 0
\(523\) 36.0000 1.57417 0.787085 0.616844i \(-0.211589\pi\)
0.787085 + 0.616844i \(0.211589\pi\)
\(524\) 0 0
\(525\) −24.0000 −1.04745
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 15.0000 0.652174
\(530\) 0 0
\(531\) 40.0000 1.73585
\(532\) 0 0
\(533\) − 5.65685i − 0.245026i
\(534\) 0 0
\(535\) 4.00000 0.172935
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.82843i 0.121829i
\(540\) 0 0
\(541\) − 9.89949i − 0.425613i −0.977094 0.212806i \(-0.931740\pi\)
0.977094 0.212806i \(-0.0682603\pi\)
\(542\) 0 0
\(543\) −20.0000 −0.858282
\(544\) 0 0
\(545\) −6.00000 −0.257012
\(546\) 0 0
\(547\) 2.82843i 0.120935i 0.998170 + 0.0604674i \(0.0192591\pi\)
−0.998170 + 0.0604674i \(0.980741\pi\)
\(548\) 0 0
\(549\) − 7.07107i − 0.301786i
\(550\) 0 0
\(551\) 33.9411i 1.44594i
\(552\) 0 0
\(553\) −8.00000 −0.340195
\(554\) 0 0
\(555\) − 28.2843i − 1.20060i
\(556\) 0 0
\(557\) −20.0000 −0.847427 −0.423714 0.905796i \(-0.639274\pi\)
−0.423714 + 0.905796i \(0.639274\pi\)
\(558\) 0 0
\(559\) −32.0000 −1.35346
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 24.0000 1.01148 0.505740 0.862686i \(-0.331220\pi\)
0.505740 + 0.862686i \(0.331220\pi\)
\(564\) 0 0
\(565\) 14.0000 0.588984
\(566\) 0 0
\(567\) − 2.82843i − 0.118783i
\(568\) 0 0
\(569\) 24.0000 1.00613 0.503066 0.864248i \(-0.332205\pi\)
0.503066 + 0.864248i \(0.332205\pi\)
\(570\) 0 0
\(571\) − 42.4264i − 1.77549i −0.460336 0.887745i \(-0.652271\pi\)
0.460336 0.887745i \(-0.347729\pi\)
\(572\) 0 0
\(573\) − 22.6274i − 0.945274i
\(574\) 0 0
\(575\) 8.48528i 0.353861i
\(576\) 0 0
\(577\) 8.00000 0.333044 0.166522 0.986038i \(-0.446746\pi\)
0.166522 + 0.986038i \(0.446746\pi\)
\(578\) 0 0
\(579\) −12.0000 −0.498703
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) − 33.9411i − 1.40570i
\(584\) 0 0
\(585\) 28.2843i 1.16941i
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 67.8823i 2.79704i
\(590\) 0 0
\(591\) −52.0000 −2.13899
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 24.0000 0.982255
\(598\) 0 0
\(599\) −32.0000 −1.30748 −0.653742 0.756717i \(-0.726802\pi\)
−0.653742 + 0.756717i \(0.726802\pi\)
\(600\) 0 0
\(601\) − 38.1838i − 1.55755i −0.627304 0.778774i \(-0.715842\pi\)
0.627304 0.778774i \(-0.284158\pi\)
\(602\) 0 0
\(603\) −60.0000 −2.44339
\(604\) 0 0
\(605\) − 4.24264i − 0.172488i
\(606\) 0 0
\(607\) 19.7990i 0.803616i 0.915724 + 0.401808i \(0.131618\pi\)
−0.915724 + 0.401808i \(0.868382\pi\)
\(608\) 0 0
\(609\) 33.9411i 1.37536i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 38.0000 1.53481 0.767403 0.641165i \(-0.221549\pi\)
0.767403 + 0.641165i \(0.221549\pi\)
\(614\) 0 0
\(615\) 5.65685i 0.228106i
\(616\) 0 0
\(617\) 4.24264i 0.170802i 0.996347 + 0.0854011i \(0.0272172\pi\)
−0.996347 + 0.0854011i \(0.972783\pi\)
\(618\) 0 0
\(619\) 19.7990i 0.795789i 0.917431 + 0.397894i \(0.130259\pi\)
−0.917431 + 0.397894i \(0.869741\pi\)
\(620\) 0 0
\(621\) −16.0000 −0.642058
\(622\) 0 0
\(623\) − 22.6274i − 0.906548i
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 64.0000 2.55591
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −28.0000 −1.11466 −0.557331 0.830290i \(-0.688175\pi\)
−0.557331 + 0.830290i \(0.688175\pi\)
\(632\) 0 0
\(633\) −24.0000 −0.953914
\(634\) 0 0
\(635\) − 5.65685i − 0.224485i
\(636\) 0 0
\(637\) −4.00000 −0.158486
\(638\) 0 0
\(639\) − 42.4264i − 1.67836i
\(640\) 0 0
\(641\) − 7.07107i − 0.279290i −0.990202 0.139645i \(-0.955404\pi\)
0.990202 0.139645i \(-0.0445962\pi\)
\(642\) 0 0
\(643\) 8.48528i 0.334627i 0.985904 + 0.167313i \(0.0535092\pi\)
−0.985904 + 0.167313i \(0.946491\pi\)
\(644\) 0 0
\(645\) 32.0000 1.26000
\(646\) 0 0
\(647\) −16.0000 −0.629025 −0.314512 0.949253i \(-0.601841\pi\)
−0.314512 + 0.949253i \(0.601841\pi\)
\(648\) 0 0
\(649\) 22.6274i 0.888204i
\(650\) 0 0
\(651\) 67.8823i 2.66052i
\(652\) 0 0
\(653\) − 7.07107i − 0.276712i −0.990383 0.138356i \(-0.955818\pi\)
0.990383 0.138356i \(-0.0441819\pi\)
\(654\) 0 0
\(655\) −4.00000 −0.156293
\(656\) 0 0
\(657\) 21.2132i 0.827606i
\(658\) 0 0
\(659\) −4.00000 −0.155818 −0.0779089 0.996960i \(-0.524824\pi\)
−0.0779089 + 0.996960i \(0.524824\pi\)
\(660\) 0 0
\(661\) 28.0000 1.08907 0.544537 0.838737i \(-0.316705\pi\)
0.544537 + 0.838737i \(0.316705\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 32.0000 1.24091
\(666\) 0 0
\(667\) 12.0000 0.464642
\(668\) 0 0
\(669\) − 11.3137i − 0.437413i
\(670\) 0 0
\(671\) 4.00000 0.154418
\(672\) 0 0
\(673\) − 4.24264i − 0.163542i −0.996651 0.0817709i \(-0.973942\pi\)
0.996651 0.0817709i \(-0.0260576\pi\)
\(674\) 0 0
\(675\) 16.9706i 0.653197i
\(676\) 0 0
\(677\) − 18.3848i − 0.706584i −0.935513 0.353292i \(-0.885062\pi\)
0.935513 0.353292i \(-0.114938\pi\)
\(678\) 0 0
\(679\) 12.0000 0.460518
\(680\) 0 0
\(681\) 56.0000 2.14592
\(682\) 0 0
\(683\) 2.82843i 0.108227i 0.998535 + 0.0541134i \(0.0172332\pi\)
−0.998535 + 0.0541134i \(0.982767\pi\)
\(684\) 0 0
\(685\) − 22.6274i − 0.864549i
\(686\) 0 0
\(687\) 50.9117i 1.94240i
\(688\) 0 0
\(689\) 48.0000 1.82865
\(690\) 0 0
\(691\) 25.4558i 0.968386i 0.874961 + 0.484193i \(0.160887\pi\)
−0.874961 + 0.484193i \(0.839113\pi\)
\(692\) 0 0
\(693\) 40.0000 1.51947
\(694\) 0 0
\(695\) 4.00000 0.151729
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −20.0000 −0.756469
\(700\) 0 0
\(701\) 12.0000 0.453234 0.226617 0.973984i \(-0.427233\pi\)
0.226617 + 0.973984i \(0.427233\pi\)
\(702\) 0 0
\(703\) − 56.5685i − 2.13352i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 33.9411i 1.27649i
\(708\) 0 0
\(709\) − 21.2132i − 0.796679i −0.917238 0.398339i \(-0.869587\pi\)
0.917238 0.398339i \(-0.130413\pi\)
\(710\) 0 0
\(711\) 14.1421i 0.530372i
\(712\) 0 0
\(713\) 24.0000 0.898807
\(714\) 0 0
\(715\) −16.0000 −0.598366
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 19.7990i 0.738378i 0.929354 + 0.369189i \(0.120364\pi\)
−0.929354 + 0.369189i \(0.879636\pi\)
\(720\) 0 0
\(721\) − 22.6274i − 0.842689i
\(722\) 0 0
\(723\) 76.0000 2.82647
\(724\) 0 0
\(725\) − 12.7279i − 0.472703i
\(726\) 0 0
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 0 0
\(729\) 43.0000 1.59259
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −12.0000 −0.443230 −0.221615 0.975134i \(-0.571133\pi\)
−0.221615 + 0.975134i \(0.571133\pi\)
\(734\) 0 0
\(735\) 4.00000 0.147542
\(736\) 0 0
\(737\) − 33.9411i − 1.25024i
\(738\) 0 0
\(739\) −32.0000 −1.17714 −0.588570 0.808447i \(-0.700309\pi\)
−0.588570 + 0.808447i \(0.700309\pi\)
\(740\) 0 0
\(741\) 90.5097i 3.32496i
\(742\) 0 0
\(743\) 36.7696i 1.34894i 0.738300 + 0.674472i \(0.235629\pi\)
−0.738300 + 0.674472i \(0.764371\pi\)
\(744\) 0 0
\(745\) 31.1127i 1.13988i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 8.00000 0.292314
\(750\) 0 0
\(751\) − 42.4264i − 1.54816i −0.633087 0.774081i \(-0.718212\pi\)
0.633087 0.774081i \(-0.281788\pi\)
\(752\) 0 0
\(753\) − 11.3137i − 0.412294i
\(754\) 0 0
\(755\) − 16.9706i − 0.617622i
\(756\) 0 0
\(757\) 14.0000 0.508839 0.254419 0.967094i \(-0.418116\pi\)
0.254419 + 0.967094i \(0.418116\pi\)
\(758\) 0 0
\(759\) − 22.6274i − 0.821323i
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) −12.0000 −0.434429
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −32.0000 −1.15545
\(768\) 0 0
\(769\) 16.0000 0.576975 0.288487 0.957484i \(-0.406848\pi\)
0.288487 + 0.957484i \(0.406848\pi\)
\(770\) 0 0
\(771\) 62.2254i 2.24099i
\(772\) 0 0
\(773\) −30.0000 −1.07903 −0.539513 0.841978i \(-0.681391\pi\)
−0.539513 + 0.841978i \(0.681391\pi\)
\(774\) 0 0
\(775\) − 25.4558i − 0.914401i
\(776\) 0 0
\(777\) − 56.5685i − 2.02939i
\(778\) 0 0
\(779\) 11.3137i 0.405356i
\(780\) 0 0
\(781\) 24.0000 0.858788
\(782\) 0 0
\(783\) 24.0000 0.857690
\(784\) 0 0
\(785\) − 2.82843i − 0.100951i
\(786\) 0 0
\(787\) − 42.4264i − 1.51234i −0.654376 0.756169i \(-0.727069\pi\)
0.654376 0.756169i \(-0.272931\pi\)
\(788\) 0 0
\(789\) 11.3137i 0.402779i
\(790\) 0 0
\(791\) 28.0000 0.995565
\(792\) 0 0
\(793\) 5.65685i 0.200881i
\(794\) 0 0
\(795\) −48.0000 −1.70238
\(796\) 0 0
\(797\) 36.0000 1.27519 0.637593 0.770374i \(-0.279930\pi\)
0.637593 + 0.770374i \(0.279930\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −40.0000 −1.41333
\(802\) 0 0
\(803\) −12.0000 −0.423471
\(804\) 0 0
\(805\) − 11.3137i − 0.398756i
\(806\) 0 0
\(807\) 20.0000 0.704033
\(808\) 0 0
\(809\) 1.41421i 0.0497211i 0.999691 + 0.0248606i \(0.00791417\pi\)
−0.999691 + 0.0248606i \(0.992086\pi\)
\(810\) 0 0
\(811\) − 8.48528i − 0.297959i −0.988840 0.148979i \(-0.952401\pi\)
0.988840 0.148979i \(-0.0475988\pi\)
\(812\) 0 0
\(813\) 22.6274i 0.793578i
\(814\) 0 0
\(815\) −12.0000 −0.420342
\(816\) 0 0
\(817\) 64.0000 2.23908
\(818\) 0 0
\(819\) 56.5685i 1.97666i
\(820\) 0 0
\(821\) 41.0122i 1.43134i 0.698441 + 0.715668i \(0.253877\pi\)
−0.698441 + 0.715668i \(0.746123\pi\)
\(822\) 0 0
\(823\) − 14.1421i − 0.492964i −0.969147 0.246482i \(-0.920725\pi\)
0.969147 0.246482i \(-0.0792746\pi\)
\(824\) 0 0
\(825\) −24.0000 −0.835573
\(826\) 0 0
\(827\) − 19.7990i − 0.688478i −0.938882 0.344239i \(-0.888137\pi\)
0.938882 0.344239i \(-0.111863\pi\)
\(828\) 0 0
\(829\) −30.0000 −1.04194 −0.520972 0.853574i \(-0.674430\pi\)
−0.520972 + 0.853574i \(0.674430\pi\)
\(830\) 0 0
\(831\) −60.0000 −2.08138
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 20.0000 0.692129
\(836\) 0 0
\(837\) 48.0000 1.65912
\(838\) 0 0
\(839\) − 19.7990i − 0.683537i −0.939784 0.341769i \(-0.888974\pi\)
0.939784 0.341769i \(-0.111026\pi\)
\(840\) 0 0
\(841\) 11.0000 0.379310
\(842\) 0 0
\(843\) − 45.2548i − 1.55866i
\(844\) 0 0
\(845\) − 4.24264i − 0.145951i
\(846\) 0 0
\(847\) − 8.48528i − 0.291558i
\(848\) 0 0
\(849\) −40.0000 −1.37280
\(850\) 0 0
\(851\) −20.0000 −0.685591
\(852\) 0 0
\(853\) − 32.5269i − 1.11370i −0.830613 0.556850i \(-0.812010\pi\)
0.830613 0.556850i \(-0.187990\pi\)
\(854\) 0 0
\(855\) − 56.5685i − 1.93460i
\(856\) 0 0
\(857\) 21.2132i 0.724629i 0.932056 + 0.362315i \(0.118013\pi\)
−0.932056 + 0.362315i \(0.881987\pi\)
\(858\) 0 0
\(859\) −48.0000 −1.63774 −0.818869 0.573980i \(-0.805399\pi\)
−0.818869 + 0.573980i \(0.805399\pi\)
\(860\) 0 0
\(861\) 11.3137i 0.385570i
\(862\) 0 0
\(863\) 16.0000 0.544646 0.272323 0.962206i \(-0.412208\pi\)
0.272323 + 0.962206i \(0.412208\pi\)
\(864\) 0 0
\(865\) 22.0000 0.748022
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −8.00000 −0.271381
\(870\) 0 0
\(871\) 48.0000 1.62642
\(872\) 0 0
\(873\) − 21.2132i − 0.717958i
\(874\) 0 0
\(875\) −32.0000 −1.08180
\(876\) 0 0
\(877\) 41.0122i 1.38488i 0.721474 + 0.692442i \(0.243465\pi\)
−0.721474 + 0.692442i \(0.756535\pi\)
\(878\) 0 0
\(879\) 73.5391i 2.48041i
\(880\) 0 0
\(881\) 32.5269i 1.09586i 0.836524 + 0.547930i \(0.184584\pi\)
−0.836524 + 0.547930i \(0.815416\pi\)
\(882\) 0 0
\(883\) 44.0000 1.48072 0.740359 0.672212i \(-0.234656\pi\)
0.740359 + 0.672212i \(0.234656\pi\)
\(884\) 0 0
\(885\) 32.0000 1.07567
\(886\) 0 0
\(887\) 48.0833i 1.61448i 0.590225 + 0.807239i \(0.299039\pi\)
−0.590225 + 0.807239i \(0.700961\pi\)
\(888\) 0 0
\(889\) − 11.3137i − 0.379450i
\(890\) 0 0
\(891\) − 2.82843i − 0.0947559i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 32.0000 1.06845
\(898\) 0 0
\(899\) −36.0000 −1.20067
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 64.0000 2.12979
\(904\) 0 0
\(905\) −10.0000 −0.332411
\(906\) 0 0
\(907\) 19.7990i 0.657415i 0.944432 + 0.328707i \(0.106613\pi\)
−0.944432 + 0.328707i \(0.893387\pi\)
\(908\) 0 0
\(909\) 60.0000 1.99007
\(910\) 0 0
\(911\) 48.0833i 1.59307i 0.604593 + 0.796535i \(0.293336\pi\)
−0.604593 + 0.796535i \(0.706664\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) − 5.65685i − 0.187010i
\(916\) 0 0
\(917\) −8.00000 −0.264183
\(918\) 0 0
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) 0 0
\(921\) 33.9411i 1.11840i
\(922\) 0 0
\(923\) 33.9411i 1.11719i
\(924\) 0 0
\(925\) 21.2132i 0.697486i
\(926\) 0 0
\(927\) −40.0000 −1.31377
\(928\) 0 0
\(929\) 52.3259i 1.71676i 0.513017 + 0.858379i \(0.328528\pi\)
−0.513017 + 0.858379i \(0.671472\pi\)
\(930\) 0 0
\(931\) 8.00000 0.262189
\(932\) 0 0
\(933\) −72.0000 −2.35717
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 16.0000 0.522697 0.261349 0.965244i \(-0.415833\pi\)
0.261349 + 0.965244i \(0.415833\pi\)
\(938\) 0 0
\(939\) −36.0000 −1.17482
\(940\) 0 0
\(941\) 46.6690i 1.52137i 0.649123 + 0.760684i \(0.275136\pi\)
−0.649123 + 0.760684i \(0.724864\pi\)
\(942\) 0 0
\(943\) 4.00000 0.130258
\(944\) 0 0
\(945\) − 22.6274i − 0.736070i
\(946\) 0 0
\(947\) 25.4558i 0.827204i 0.910458 + 0.413602i \(0.135729\pi\)
−0.910458 + 0.413602i \(0.864271\pi\)
\(948\) 0 0
\(949\) − 16.9706i − 0.550888i
\(950\) 0 0
\(951\) −60.0000 −1.94563
\(952\) 0 0
\(953\) −48.0000 −1.55487 −0.777436 0.628962i \(-0.783480\pi\)
−0.777436 + 0.628962i \(0.783480\pi\)
\(954\) 0 0
\(955\) − 11.3137i − 0.366103i
\(956\) 0 0
\(957\) 33.9411i 1.09716i
\(958\) 0 0
\(959\) − 45.2548i − 1.46135i
\(960\) 0 0
\(961\) −41.0000 −1.32258
\(962\) 0 0
\(963\) − 14.1421i − 0.455724i
\(964\) 0 0
\(965\) −6.00000 −0.193147
\(966\) 0 0
\(967\) 28.0000 0.900419 0.450210 0.892923i \(-0.351349\pi\)
0.450210 + 0.892923i \(0.351349\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −24.0000 −0.770197 −0.385098 0.922876i \(-0.625832\pi\)
−0.385098 + 0.922876i \(0.625832\pi\)
\(972\) 0 0
\(973\) 8.00000 0.256468
\(974\) 0 0
\(975\) − 33.9411i − 1.08699i
\(976\) 0 0
\(977\) −8.00000 −0.255943 −0.127971 0.991778i \(-0.540847\pi\)
−0.127971 + 0.991778i \(0.540847\pi\)
\(978\) 0 0
\(979\) − 22.6274i − 0.723175i
\(980\) 0 0
\(981\) 21.2132i 0.677285i
\(982\) 0 0
\(983\) − 48.0833i − 1.53362i −0.641875 0.766809i \(-0.721843\pi\)
0.641875 0.766809i \(-0.278157\pi\)
\(984\) 0 0
\(985\) −26.0000 −0.828429
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 22.6274i − 0.719510i
\(990\) 0 0
\(991\) 8.48528i 0.269544i 0.990877 + 0.134772i \(0.0430302\pi\)
−0.990877 + 0.134772i \(0.956970\pi\)
\(992\) 0 0
\(993\) − 90.5097i − 2.87224i
\(994\) 0 0
\(995\) 12.0000 0.380426
\(996\) 0 0
\(997\) 7.07107i 0.223943i 0.993711 + 0.111971i \(0.0357165\pi\)
−0.993711 + 0.111971i \(0.964283\pi\)
\(998\) 0 0
\(999\) −40.0000 −1.26554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2312.2.b.a.577.1 2
17.4 even 4 2312.2.a.k.1.1 2
17.9 even 8 136.2.k.d.89.1 yes 2
17.13 even 4 2312.2.a.k.1.2 2
17.15 even 8 136.2.k.d.81.1 2
17.16 even 2 inner 2312.2.b.a.577.2 2
51.26 odd 8 1224.2.w.e.361.1 2
51.32 odd 8 1224.2.w.e.217.1 2
68.15 odd 8 272.2.o.a.81.1 2
68.43 odd 8 272.2.o.a.225.1 2
68.47 odd 4 4624.2.a.t.1.1 2
68.55 odd 4 4624.2.a.t.1.2 2
136.43 odd 8 1088.2.o.q.769.1 2
136.77 even 8 1088.2.o.b.769.1 2
136.83 odd 8 1088.2.o.q.897.1 2
136.117 even 8 1088.2.o.b.897.1 2
204.83 even 8 2448.2.be.i.1441.1 2
204.179 even 8 2448.2.be.i.1585.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
136.2.k.d.81.1 2 17.15 even 8
136.2.k.d.89.1 yes 2 17.9 even 8
272.2.o.a.81.1 2 68.15 odd 8
272.2.o.a.225.1 2 68.43 odd 8
1088.2.o.b.769.1 2 136.77 even 8
1088.2.o.b.897.1 2 136.117 even 8
1088.2.o.q.769.1 2 136.43 odd 8
1088.2.o.q.897.1 2 136.83 odd 8
1224.2.w.e.217.1 2 51.32 odd 8
1224.2.w.e.361.1 2 51.26 odd 8
2312.2.a.k.1.1 2 17.4 even 4
2312.2.a.k.1.2 2 17.13 even 4
2312.2.b.a.577.1 2 1.1 even 1 trivial
2312.2.b.a.577.2 2 17.16 even 2 inner
2448.2.be.i.1441.1 2 204.83 even 8
2448.2.be.i.1585.1 2 204.179 even 8
4624.2.a.t.1.1 2 68.47 odd 4
4624.2.a.t.1.2 2 68.55 odd 4