Properties

Label 2.3.a_c
Base Field $\F_{3}$
Dimension $2$
Ordinary Yes
$p$-rank $2$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{3}$
Dimension:  $2$
L-polynomial:  $( 1 - 2 x + 3 x^{2} )( 1 + 2 x + 3 x^{2} )$
Frobenius angles:  $\pm0.304086723985$, $\pm0.695913276015$
Angle rank:  $1$ (numerical)
Jacobians:  2

This isogeny class is not simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains the Jacobians of 2 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 12 144 684 9216 59532 467856 4779948 42614784 387423756 3544059024

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 4 14 28 110 244 638 2188 6494 19684 60014

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{3}$
The isogeny class factors as 1.3.ac $\times$ 1.3.c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{3}$
The base change of $A$ to $\F_{3^{2}}$ is 1.9.c 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-2}) \)$)$
All geometric endomorphisms are defined over $\F_{3^{2}}$.

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.
TwistExtension DegreeCommon base change
2.3.ae_k$2$2.9.e_w
2.3.e_k$2$2.9.e_w
2.3.a_ac$4$2.81.bc_nu
Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
2.3.ae_k$2$2.9.e_w
2.3.e_k$2$2.9.e_w
2.3.a_ac$4$2.81.bc_nu
2.3.ac_b$6$2.729.ado_fhm
2.3.c_b$6$2.729.ado_fhm
2.3.ae_i$8$(not in LMFDB)
2.3.e_i$8$(not in LMFDB)