Invariants
| Base field: | $\F_{31}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 10 x^{2} + 961 x^{4}$ |
| Frobenius angles: | $\pm0.275782775241$, $\pm0.724217224759$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-2}, \sqrt{13})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $162$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $972$ | $944784$ | $887475852$ | $856261518336$ | $819628328451852$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $32$ | $982$ | $29792$ | $927166$ | $28629152$ | $887448022$ | $27512614112$ | $852888092158$ | $26439622160672$ | $819628369922902$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 162 curves (of which all are hyperelliptic):
- $y^2=27 x^6+3 x^5+17 x^4+9 x^3+10 x^2+30 x+2$
- $y^2=23 x^6+20 x^5+30 x^4+20 x^3+x^2+15 x+22$
- $y^2=7 x^6+29 x^5+28 x^4+29 x^3+3 x^2+14 x+4$
- $y^2=24 x^6+10 x^5+27 x^4+8 x^3+25 x^2+13 x+26$
- $y^2=10 x^6+30 x^5+19 x^4+24 x^3+13 x^2+8 x+16$
- $y^2=21 x^6+27 x^5+17 x^4+13 x^3+10 x^2+22 x+5$
- $y^2=2 x^6+30 x^5+19 x^4+11 x^3+7 x^2+24 x+26$
- $y^2=6 x^6+28 x^5+26 x^4+2 x^3+21 x^2+10 x+16$
- $y^2=24 x^6+6 x^5+26 x^4+10 x^3+2 x^2+27 x+25$
- $y^2=14 x^6+26 x^5+29 x^4+27 x^3+17 x^2+3 x+9$
- $y^2=11 x^6+16 x^5+25 x^4+19 x^3+20 x^2+9 x+27$
- $y^2=4 x^6+27 x^5+20 x^4+28 x^3+23 x^2+17 x+27$
- $y^2=12 x^6+19 x^5+29 x^4+22 x^3+7 x^2+20 x+19$
- $y^2=30 x^5+19 x^4+9 x^3+6 x^2+23 x$
- $y^2=26 x^6+18 x^5+2 x^4+8 x^3+20 x^2+6 x+16$
- $y^2=16 x^6+23 x^5+6 x^4+24 x^3+29 x^2+18 x+17$
- $y^2=3 x^6+5 x^5+3 x^4+6 x^3+18 x^2+15 x+3$
- $y^2=9 x^6+15 x^5+9 x^4+18 x^3+23 x^2+14 x+9$
- $y^2=29 x^6+14 x^5+20 x^4+28 x^3+17 x^2+5 x+16$
- $y^2=8 x^6+2 x^5+x^4+15 x^3+12 x^2+9 x+29$
- and 142 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31^{2}}$.
Endomorphism algebra over $\F_{31}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}, \sqrt{13})\). |
| The base change of $A$ to $\F_{31^{2}}$ is 1.961.k 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-26}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.31.a_ak | $4$ | (not in LMFDB) |
| 2.31.am_cu | $8$ | (not in LMFDB) |
| 2.31.m_cu | $8$ | (not in LMFDB) |