Properties

Label 2.31.a_k
Base field $\F_{31}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{31}$
Dimension:  $2$
L-polynomial:  $1 + 10 x^{2} + 961 x^{4}$
Frobenius angles:  $\pm0.275782775241$, $\pm0.724217224759$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-2}, \sqrt{13})\)
Galois group:  $C_2^2$
Jacobians:  $162$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $972$ $944784$ $887475852$ $856261518336$ $819628328451852$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $32$ $982$ $29792$ $927166$ $28629152$ $887448022$ $27512614112$ $852888092158$ $26439622160672$ $819628369922902$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 162 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{31^{2}}$.

Endomorphism algebra over $\F_{31}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}, \sqrt{13})\).
Endomorphism algebra over $\overline{\F}_{31}$
The base change of $A$ to $\F_{31^{2}}$ is 1.961.k 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-26}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.31.a_ak$4$(not in LMFDB)
2.31.am_cu$8$(not in LMFDB)
2.31.m_cu$8$(not in LMFDB)