Invariants
| Base field: | $\F_{71}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 70 x^{2} + 5041 x^{4}$ |
| Frobenius angles: | $\pm0.167957856219$, $\pm0.832042143781$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-2}, \sqrt{53})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $144$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4972$ | $24720784$ | $128100999532$ | $646016975594496$ | $3255243549080407852$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $72$ | $4902$ | $357912$ | $25422046$ | $1804229352$ | $128101715142$ | $9095120158392$ | $645753579186238$ | $45848500718449032$ | $3255243547150934502$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 144 curves (of which all are hyperelliptic):
- $y^2=43 x^6+49 x^5+31 x^4+x^3+33 x^2+21 x+32$
- $y^2=17 x^6+59 x^5+4 x^4+7 x^3+18 x^2+5 x+11$
- $y^2=14 x^6+5 x^5+52 x^4+50 x^3+42 x^2+47 x+54$
- $y^2=27 x^6+35 x^5+9 x^4+66 x^3+10 x^2+45 x+23$
- $y^2=2 x^6+19 x^5+41 x^4+65 x^3+13 x^2+26 x+70$
- $y^2=14 x^6+62 x^5+3 x^4+29 x^3+20 x^2+40 x+64$
- $y^2=24 x^6+55 x^5+26 x^4+8 x^3+49 x^2+44 x+34$
- $y^2=13 x^6+53 x^5+4 x^4+42 x^3+23 x^2+9 x+18$
- $y^2=20 x^6+16 x^5+28 x^4+10 x^3+19 x^2+63 x+55$
- $y^2=52 x^6+2 x^5+26 x^4+16 x^3+51 x^2+42 x+41$
- $y^2=9 x^6+14 x^5+40 x^4+41 x^3+2 x^2+10 x+3$
- $y^2=25 x^6+55 x^5+4 x^4+62 x^3+11 x^2+12 x+34$
- $y^2=33 x^6+30 x^5+28 x^4+8 x^3+6 x^2+13 x+25$
- $y^2=46 x^6+41 x^4+13 x^3+3 x^2+16$
- $y^2=11 x^6+18 x^5+69 x^4+21 x^3+19 x^2+27 x+3$
- $y^2=56 x^6+30 x^5+22 x^4+63 x^3+8 x^2+38 x+6$
- $y^2=48 x^6+63 x^5+27 x^4+30 x^3+55 x^2+23 x+66$
- $y^2=43 x^6+25 x^5+68 x^4+55 x^3+46 x+38$
- $y^2=17 x^6+33 x^5+50 x^4+30 x^3+38 x+53$
- $y^2=69 x^6+13 x^5+65 x^4+46 x^3+x^2+27 x+33$
- and 124 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71^{2}}$.
Endomorphism algebra over $\F_{71}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}, \sqrt{53})\). |
| The base change of $A$ to $\F_{71^{2}}$ is 1.5041.acs 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-106}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.71.a_cs | $4$ | (not in LMFDB) |
| 2.71.am_cu | $8$ | (not in LMFDB) |
| 2.71.m_cu | $8$ | (not in LMFDB) |