Properties

Label 2-1224-1.1-c1-0-1
Degree $2$
Conductor $1224$
Sign $1$
Analytic cond. $9.77368$
Root an. cond. $3.12629$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 4·7-s − 4·11-s + 6·13-s − 17-s + 4·19-s + 4·23-s − 25-s + 6·29-s − 4·31-s + 8·35-s + 10·37-s + 6·41-s + 4·43-s + 8·47-s + 9·49-s − 6·53-s + 8·55-s + 4·59-s − 14·61-s − 12·65-s − 12·67-s + 12·71-s + 10·73-s + 16·77-s − 4·79-s − 4·83-s + ⋯
L(s)  = 1  − 0.894·5-s − 1.51·7-s − 1.20·11-s + 1.66·13-s − 0.242·17-s + 0.917·19-s + 0.834·23-s − 1/5·25-s + 1.11·29-s − 0.718·31-s + 1.35·35-s + 1.64·37-s + 0.937·41-s + 0.609·43-s + 1.16·47-s + 9/7·49-s − 0.824·53-s + 1.07·55-s + 0.520·59-s − 1.79·61-s − 1.48·65-s − 1.46·67-s + 1.42·71-s + 1.17·73-s + 1.82·77-s − 0.450·79-s − 0.439·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1224\)    =    \(2^{3} \cdot 3^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(9.77368\)
Root analytic conductor: \(3.12629\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1224,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.024964484\)
\(L(\frac12)\) \(\approx\) \(1.024964484\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
17 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.633532707778361049184968533027, −8.970424755908821973249850855092, −8.003753229013609592486800840857, −7.35949009666835853584688655692, −6.34536531717589705924279835378, −5.68532009157392283288127569559, −4.39115436224503183143289880455, −3.45432480842183618626147488920, −2.78738487231981523171002916538, −0.73884361659554928062200855822, 0.73884361659554928062200855822, 2.78738487231981523171002916538, 3.45432480842183618626147488920, 4.39115436224503183143289880455, 5.68532009157392283288127569559, 6.34536531717589705924279835378, 7.35949009666835853584688655692, 8.003753229013609592486800840857, 8.970424755908821973249850855092, 9.633532707778361049184968533027

Graph of the $Z$-function along the critical line