Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 6 x + 53 x^{2}$ |
| Frobenius angles: | $\pm0.635198170427$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-11}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $10$ |
| Isomorphism classes: | 10 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $60$ | $2880$ | $148140$ | $7891200$ | $418230300$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $60$ | $2880$ | $148140$ | $7891200$ | $418230300$ | $22164114240$ | $1174710776460$ | $62259705676800$ | $3299763519468540$ | $174887469990446400$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 10 curves (of which 0 are hyperelliptic):
- $y^2=x^3+40 x+40$
- $y^2=x^3+9 x+18$
- $y^2=x^3+13 x+13$
- $y^2=x^3+35 x+17$
- $y^2=x^3+6 x+6$
- $y^2=x^3+17 x+34$
- $y^2=x^3+5 x+10$
- $y^2=x^3+36 x+36$
- $y^2=x^3+12 x+12$
- $y^2=x^3+45 x+45$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-11}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.53.ag | $2$ | (not in LMFDB) |