L(s) = 1 | − 2·3-s + 3·9-s − 2·17-s − 8·19-s − 10·25-s − 4·27-s − 20·41-s − 8·43-s − 10·49-s + 4·51-s + 16·57-s + 8·59-s − 8·67-s − 28·73-s + 20·75-s + 5·81-s + 24·83-s − 4·89-s − 4·97-s + 32·107-s − 12·113-s − 22·121-s + 40·123-s + 127-s + 16·129-s + 131-s + 137-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 9-s − 0.485·17-s − 1.83·19-s − 2·25-s − 0.769·27-s − 3.12·41-s − 1.21·43-s − 1.42·49-s + 0.560·51-s + 2.11·57-s + 1.04·59-s − 0.977·67-s − 3.27·73-s + 2.30·75-s + 5/9·81-s + 2.63·83-s − 0.423·89-s − 0.406·97-s + 3.09·107-s − 1.12·113-s − 2·121-s + 3.60·123-s + 0.0887·127-s + 1.40·129-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2663424 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2663424 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.03118715673001635895164549850, −6.69989082812922800047354757550, −6.29392484047154187578719849324, −6.06188611910220482610867547311, −5.53399853944419593600376639581, −5.04753779352725801743199793018, −4.63834490626473839787470699777, −4.32146836767987654020354473360, −3.63470410211943613588864920865, −3.38688660560456486653785466782, −2.39845581420990817522811157438, −1.86322179819912387769835446845, −1.46813220159740528632510266297, 0, 0,
1.46813220159740528632510266297, 1.86322179819912387769835446845, 2.39845581420990817522811157438, 3.38688660560456486653785466782, 3.63470410211943613588864920865, 4.32146836767987654020354473360, 4.63834490626473839787470699777, 5.04753779352725801743199793018, 5.53399853944419593600376639581, 6.06188611910220482610867547311, 6.29392484047154187578719849324, 6.69989082812922800047354757550, 7.03118715673001635895164549850