Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 61 x^{2} )^{2}$ |
$1 + 122 x^{2} + 3721 x^{4}$ | |
Frobenius angles: | $\pm0.5$, $\pm0.5$ |
Angle rank: | $0$ (numerical) |
Jacobians: | $65$ |
This isogeny class is not simple, primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is supersingular.
$p$-rank: | $0$ |
Slopes: | $[1/2, 1/2, 1/2, 1/2]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3844$ | $14776336$ | $51520828324$ | $191501314560000$ | $713342913352075204$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $62$ | $3966$ | $226982$ | $13830958$ | $844596302$ | $51521282286$ | $3142742836022$ | $191707257613918$ | $11694146092834142$ | $713342915041267806$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 65 curves (of which all are hyperelliptic):
- $y^2=53 x^6+25 x^5+42 x^4+27 x^3+4 x^2+42 x+28$
- $y^2=45 x^6+50 x^5+23 x^4+54 x^3+8 x^2+23 x+56$
- $y^2=32 x^6+32 x^5+45 x^4+53 x^3+45 x^2+32 x+32$
- $y^2=3 x^6+3 x^5+29 x^4+45 x^3+29 x^2+3 x+3$
- $y^2=59 x^6+11 x^5+19 x^4+16 x^3+55 x^2+41 x+48$
- $y^2=57 x^6+22 x^5+38 x^4+32 x^3+49 x^2+21 x+35$
- $y^2=37 x^6+18 x^4+41 x^3+30 x^2+46 x+26$
- $y^2=13 x^6+36 x^4+21 x^3+60 x^2+31 x+52$
- $y^2=27 x^6+30 x^5+41 x^4+26 x^3+47 x^2+52 x+42$
- $y^2=54 x^6+60 x^5+21 x^4+52 x^3+33 x^2+43 x+23$
- $y^2=20 x^6+13 x^5+52 x^4+55 x^3+17 x^2+39 x+12$
- $y^2=45 x^6+20 x^5+16 x^4+43 x^3+12 x^2+23 x+37$
- $y^2=43 x^5+41 x^4+57 x^3+38 x^2+53 x+22$
- $y^2=31 x^6+36 x^4+36 x^2+31$
- $y^2=x^6+11 x^4+11 x^2+1$
- $y^2=31 x^6+11 x^4+22 x^2+4$
- $y^2=32 x^6+x^4+2 x^2+12$
- $y^2=31 x^6+16 x^5+27 x^4+52 x^3+37 x^2+35 x+58$
- $y^2=x^6+32 x^5+54 x^4+43 x^3+13 x^2+9 x+55$
- $y^2=5 x^6+58 x^5+40 x^4+40 x^3+47 x^2+19 x+6$
- and 45 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61^{2}}$.
Endomorphism algebra over $\F_{61}$The isogeny class factors as 1.61.a 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-61}) \)$)$ |
The base change of $A$ to $\F_{61^{2}}$ is 1.3721.es 2 and its endomorphism algebra is $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over \(\Q\) ramified at $61$ and $\infty$. |
Base change
This is a primitive isogeny class.