| L(s) = 1 | − 2·4-s + 5-s + 4·9-s + 4·13-s + 4·16-s − 12·17-s − 2·20-s − 4·25-s − 8·36-s − 2·37-s − 6·41-s + 4·45-s + 2·49-s − 8·52-s − 13·53-s + 10·61-s − 8·64-s + 4·65-s + 24·68-s − 2·73-s + 4·80-s + 7·81-s − 12·85-s + 24·89-s + 10·97-s + 8·100-s − 12·101-s + ⋯ |
| L(s) = 1 | − 4-s + 0.447·5-s + 4/3·9-s + 1.10·13-s + 16-s − 2.91·17-s − 0.447·20-s − 4/5·25-s − 4/3·36-s − 0.328·37-s − 0.937·41-s + 0.596·45-s + 2/7·49-s − 1.10·52-s − 1.78·53-s + 1.28·61-s − 64-s + 0.496·65-s + 2.91·68-s − 0.234·73-s + 0.447·80-s + 7/9·81-s − 1.30·85-s + 2.54·89-s + 1.01·97-s + 4/5·100-s − 1.19·101-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4240 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4240 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.7441133267\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7441133267\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.73091995435072935616474322247, −11.87695953386478830377450176328, −11.12861149270607666911621761179, −10.63530562675408550669833007924, −9.979551782259052851675936756200, −9.414247610556808307059138589484, −8.832715740821302498668790162905, −8.389143546910867311269051532984, −7.46243451280049599709785862653, −6.62566816337418312191905909544, −6.14324073284337730711567884401, −4.99155582763338176726655577441, −4.38568537084502361576790861730, −3.68324386515125233033208675776, −1.90044597069967539028129303549,
1.90044597069967539028129303549, 3.68324386515125233033208675776, 4.38568537084502361576790861730, 4.99155582763338176726655577441, 6.14324073284337730711567884401, 6.62566816337418312191905909544, 7.46243451280049599709785862653, 8.389143546910867311269051532984, 8.832715740821302498668790162905, 9.414247610556808307059138589484, 9.979551782259052851675936756200, 10.63530562675408550669833007924, 11.12861149270607666911621761179, 11.87695953386478830377450176328, 12.73091995435072935616474322247