Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 8 x + 61 x^{2} )( 1 - 2 x + 61 x^{2} )$ |
| $1 - 10 x + 138 x^{2} - 610 x^{3} + 3721 x^{4}$ | |
| Frobenius angles: | $\pm0.328850104905$, $\pm0.459132412189$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $144$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3240$ | $14515200$ | $51818515560$ | $191674028851200$ | $713292027310521000$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $52$ | $3898$ | $228292$ | $13843438$ | $844536052$ | $51520247818$ | $3142743544132$ | $191707309734238$ | $11694146109482932$ | $713342913182487898$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 144 curves (of which all are hyperelliptic):
- $y^2=38 x^6+20 x^5+42 x^4+13 x^3+41 x^2+47 x+33$
- $y^2=56 x^6+30 x^5+18 x^4+27 x^3+30 x^2+27 x+33$
- $y^2=32 x^6+16 x^5+50 x^4+56 x^3+52 x^2+x+43$
- $y^2=20 x^6+57 x^5+7 x^4+35 x^3+17 x^2+33 x+2$
- $y^2=26 x^6+25 x^5+3 x^4+52 x^3+26 x^2+34 x+44$
- $y^2=37 x^6+33 x^5+40 x^4+54 x^3+57 x^2+17 x+6$
- $y^2=48 x^6+44 x^5+37 x^4+22 x^3+19 x^2+33 x+17$
- $y^2=8 x^6+10 x^5+47 x^4+26 x^3+29 x^2+39 x+58$
- $y^2=27 x^6+40 x^5+50 x^4+54 x^3+50 x^2+40 x+27$
- $y^2=45 x^6+17 x^5+59 x^4+55 x^3+45 x^2+38 x+53$
- $y^2=41 x^6+31 x^5+12 x^4+42 x^3+55 x^2+49 x+54$
- $y^2=23 x^6+2 x^5+4 x^4+31 x^3+4 x^2+2 x+23$
- $y^2=31 x^6+20 x^5+3 x^4+50 x^3+56 x^2+42 x+44$
- $y^2=30 x^5+27 x^4+5 x^3+3 x^2+51 x+37$
- $y^2=5 x^6+7 x^5+18 x^4+16 x^3+6 x^2+60 x+33$
- $y^2=47 x^6+18 x^5+25 x^4+11 x^3+14 x^2+18 x+2$
- $y^2=48 x^6+15 x^5+41 x^4+25 x^3+3 x^2+56 x+39$
- $y^2=43 x^6+35 x^5+37 x^4+60 x^3+37 x^2+35 x+43$
- $y^2=17 x^6+22 x^5+43 x^4+17 x^3+20 x^2+40 x+24$
- $y^2=29 x^6+10 x^5+39 x^4+15 x^3+39 x^2+10 x+29$
- and 124 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$| The isogeny class factors as 1.61.ai $\times$ 1.61.ac and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.61.ag_ec | $2$ | (not in LMFDB) |
| 2.61.g_ec | $2$ | (not in LMFDB) |
| 2.61.k_fi | $2$ | (not in LMFDB) |