Properties

Label 2.61.ak_fi
Base field $\F_{61}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{61}$
Dimension:  $2$
L-polynomial:  $( 1 - 8 x + 61 x^{2} )( 1 - 2 x + 61 x^{2} )$
  $1 - 10 x + 138 x^{2} - 610 x^{3} + 3721 x^{4}$
Frobenius angles:  $\pm0.328850104905$, $\pm0.459132412189$
Angle rank:  $2$ (numerical)
Jacobians:  $144$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3240$ $14515200$ $51818515560$ $191674028851200$ $713292027310521000$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $52$ $3898$ $228292$ $13843438$ $844536052$ $51520247818$ $3142743544132$ $191707309734238$ $11694146109482932$ $713342913182487898$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 144 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{61}$.

Endomorphism algebra over $\F_{61}$
The isogeny class factors as 1.61.ai $\times$ 1.61.ac and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.61.ag_ec$2$(not in LMFDB)
2.61.g_ec$2$(not in LMFDB)
2.61.k_fi$2$(not in LMFDB)