Invariants
Base field: | $\F_{41}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 41 x^{2} )( 1 + 6 x + 41 x^{2} )$ |
$1 + 6 x + 82 x^{2} + 246 x^{3} + 1681 x^{4}$ | |
Frobenius angles: | $\pm0.5$, $\pm0.655213070720$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $184$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
$p$-rank: | $1$ |
Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2016$ | $3048192$ | $4714264800$ | $7978947379200$ | $13424272955333856$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $48$ | $1810$ | $68400$ | $2823646$ | $115870128$ | $4750107442$ | $194754510768$ | $7984923676606$ | $327381900087600$ | $13422659579643730$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 184 curves (of which all are hyperelliptic):
- $y^2=37 x^6+4 x^5+23 x^4+32 x^3+13 x^2+31 x+31$
- $y^2=39 x^6+23 x^5+13 x^4+x^3+19 x^2+30 x+28$
- $y^2=9 x^6+12 x^5+11 x^4+29 x^3+12 x^2+38 x+5$
- $y^2=4 x^6+7 x^5+23 x^4+10 x^3+23 x^2+7 x+4$
- $y^2=36 x^6+12 x^5+9 x^4+3 x^3+32 x^2+18 x+25$
- $y^2=22 x^6+25 x^5+15 x^4+35 x^3+35 x^2+x+18$
- $y^2=26 x^6+39 x^5+29 x^4+20 x^3+31 x^2+23 x+16$
- $y^2=3 x^5+3 x^4+26 x+27$
- $y^2=33 x^6+38 x^5+7 x^4+21 x^3+22 x^2+3 x+31$
- $y^2=32 x^6+12 x^5+40 x^4+40 x^2+12 x+32$
- $y^2=38 x^6+23 x^5+30 x^4+30 x^3+38 x^2+5 x+11$
- $y^2=38 x^6+24 x^5+7 x^4+8 x^3+37 x^2+29 x+24$
- $y^2=36 x^5+15 x^4+27 x^3+14 x^2+20 x+36$
- $y^2=21 x^6+29 x^5+22 x^4+37 x^3+34 x^2+19 x+17$
- $y^2=40 x^6+2 x^5+31 x^4+27 x^3+23 x^2+19 x+23$
- $y^2=12 x^6+35 x^5+14 x^4+5 x^3+24 x^2+15 x+13$
- $y^2=22 x^6+33 x^5+18 x^4+32 x^3+18 x^2+33 x+22$
- $y^2=26 x^6+8 x^5+8 x^4+8 x^3+36 x^2+21 x+9$
- $y^2=8 x^6+29 x^5+27 x^4+14 x^3+38 x^2+27 x+2$
- $y^2=5 x^6+4 x^5+19 x^4+18 x^3+30 x^2+3 x+13$
- and 164 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41^{2}}$.
Endomorphism algebra over $\F_{41}$The isogeny class factors as 1.41.a $\times$ 1.41.g and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{41^{2}}$ is 1.1681.bu $\times$ 1.1681.de. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.41.ag_de | $2$ | (not in LMFDB) |