Properties

Label 2.41.g_de
Base field $\F_{41}$
Dimension $2$
$p$-rank $1$
Ordinary no
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{41}$
Dimension:  $2$
L-polynomial:  $( 1 + 41 x^{2} )( 1 + 6 x + 41 x^{2} )$
  $1 + 6 x + 82 x^{2} + 246 x^{3} + 1681 x^{4}$
Frobenius angles:  $\pm0.5$, $\pm0.655213070720$
Angle rank:  $1$ (numerical)
Jacobians:  $184$

This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2016$ $3048192$ $4714264800$ $7978947379200$ $13424272955333856$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $48$ $1810$ $68400$ $2823646$ $115870128$ $4750107442$ $194754510768$ $7984923676606$ $327381900087600$ $13422659579643730$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 184 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{41^{2}}$.

Endomorphism algebra over $\F_{41}$
The isogeny class factors as 1.41.a $\times$ 1.41.g and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{41}$
The base change of $A$ to $\F_{41^{2}}$ is 1.1681.bu $\times$ 1.1681.de. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.41.ag_de$2$(not in LMFDB)