Invariants
| Base field: | $\F_{31}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 10 x + 31 x^{2} )( 1 + 10 x + 31 x^{2} )$ |
| $1 - 38 x^{2} + 961 x^{4}$ | |
| Frobenius angles: | $\pm0.145000771013$, $\pm0.854999228987$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $56$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $924$ | $853776$ | $887558364$ | $853776000000$ | $819628295936604$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $32$ | $886$ | $29792$ | $924478$ | $28629152$ | $887613046$ | $27512614112$ | $852894274558$ | $26439622160672$ | $819628304892406$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):
- $y^2=4 x^6+3 x^5+x^4+18 x^3+23 x^2+6 x+29$
- $y^2=18 x^6+18 x^5+7 x^4+18 x^3+24 x^2+18 x+13$
- $y^2=17 x^6+26 x^5+27 x^4+21 x^2+25 x+3$
- $y^2=20 x^6+16 x^5+19 x^4+x^2+13 x+9$
- $y^2=17 x^6+3 x^5+24 x^4+2 x^3+8 x^2+21 x+19$
- $y^2=18 x^6+26 x^5+22 x^4+24 x^3+10 x^2+21 x+22$
- $y^2=26 x^6+6 x^4+18 x^2+20$
- $y^2=7 x^6+12 x^4+5 x^2+3$
- $y^2=5 x^6+11 x^5+20 x^4+22 x^3+18 x^2+21 x+10$
- $y^2=15 x^6+2 x^5+29 x^4+4 x^3+23 x^2+x+30$
- $y^2=13 x^6+21 x^5+23 x^4+30 x^3+3 x^2+13 x+10$
- $y^2=8 x^6+x^5+7 x^4+28 x^3+9 x^2+8 x+30$
- $y^2=16 x^6+28 x^5+22 x^4+26 x^3+17 x^2+13 x+8$
- $y^2=17 x^6+22 x^5+4 x^4+16 x^3+20 x^2+8 x+24$
- $y^2=17 x^6+4 x^5+8 x^4+19 x^3+13 x^2+28 x+19$
- $y^2=15 x^6+5 x^5+6 x^4+30 x^3+25 x^2+20 x+16$
- $y^2=14 x^6+15 x^5+18 x^4+28 x^3+13 x^2+29 x+17$
- $y^2=29 x^6+22 x^5+16 x^4+19 x^3+20 x^2+10 x+6$
- $y^2=25 x^6+4 x^5+17 x^4+26 x^3+29 x^2+30 x+18$
- $y^2=2 x^6+13 x^5+7 x^3+24 x+23$
- and 36 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31^{2}}$.
Endomorphism algebra over $\F_{31}$| The isogeny class factors as 1.31.ak $\times$ 1.31.k and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{31^{2}}$ is 1.961.abm 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-6}) \)$)$ |
Base change
This is a primitive isogeny class.