Invariants
| Base field: | $\F_{71}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 86 x^{2} + 5041 x^{4}$ |
| Frobenius angles: | $\pm0.146459823195$, $\pm0.853540176805$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-14}, \sqrt{57})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $200$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4956$ | $24561936$ | $128100948444$ | $645890100839424$ | $3255243551410379676$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $72$ | $4870$ | $357912$ | $25417054$ | $1804229352$ | $128101612966$ | $9095120158392$ | $645753618463294$ | $45848500718449032$ | $3255243551810878150$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 200 curves (of which all are hyperelliptic):
- $y^2=35 x^6+33 x^5+61 x^4+67 x^3+24 x^2+63 x+41$
- $y^2=32 x^6+18 x^5+x^4+43 x^3+26 x^2+15 x+3$
- $y^2=57 x^6+67 x^5+38 x^4+9 x^3+39 x^2+9 x+63$
- $y^2=44 x^6+43 x^5+53 x^4+63 x^3+60 x^2+63 x+15$
- $y^2=59 x^6+8 x^5+34 x^4+27 x^3+68 x^2+54 x+61$
- $y^2=58 x^6+56 x^5+25 x^4+47 x^3+50 x^2+23 x+1$
- $y^2=16 x^6+11 x^5+39 x^4+25 x^3+47 x^2+46 x+63$
- $y^2=41 x^6+6 x^5+60 x^4+33 x^3+45 x^2+38 x+15$
- $y^2=50 x^6+20 x^5+10 x^4+59 x^3+13 x^2+48 x+14$
- $y^2=49 x^6+70 x^5+29 x^4+56 x^3+66 x^2+41 x+33$
- $y^2=37 x^6+8 x^5+68 x^4+58 x^3+36 x^2+16 x+35$
- $y^2=3 x^6+x^5+23 x^4+38 x^3+3 x^2+33 x+66$
- $y^2=21 x^6+7 x^5+19 x^4+53 x^3+21 x^2+18 x+36$
- $y^2=5 x^6+5 x^5+11 x^4+62 x^3+56 x^2+52 x+4$
- $y^2=35 x^6+35 x^5+6 x^4+8 x^3+37 x^2+9 x+28$
- $y^2=45 x^6+11 x^5+26 x^4+43 x^3+25 x^2+25 x+64$
- $y^2=31 x^6+6 x^5+40 x^4+17 x^3+33 x^2+33 x+22$
- $y^2=7 x^6+62 x^5+17 x^4+70 x^3+8 x^2+41 x+43$
- $y^2=49 x^6+46 x^5+3 x^4+60 x^3+41 x+4$
- $y^2=59 x^6+38 x^5+21 x^4+65 x^3+3 x+28$
- and 180 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71^{2}}$.
Endomorphism algebra over $\F_{71}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-14}, \sqrt{57})\). |
| The base change of $A$ to $\F_{71^{2}}$ is 1.5041.adi 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-798}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.71.a_di | $4$ | (not in LMFDB) |