Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 100 x^{2} + 4489 x^{4}$ |
| Frobenius angles: | $\pm0.384078286001$, $\pm0.615921713999$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-26}, \sqrt{34})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $408$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4590$ | $21068100$ | $90458035470$ | $406026530010000$ | $1822837802182321950$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $68$ | $4690$ | $300764$ | $20149078$ | $1350125108$ | $90457688770$ | $6060711605324$ | $406067756072158$ | $27206534396294948$ | $1822837799812882450$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 408 curves (of which all are hyperelliptic):
- $y^2=44 x^6+53 x^5+52 x^4+27 x^2+43 x+43$
- $y^2=21 x^6+39 x^5+37 x^4+54 x^2+19 x+19$
- $y^2=35 x^6+63 x^5+4 x^4+6 x^3+26 x^2+27 x+48$
- $y^2=3 x^6+59 x^5+8 x^4+12 x^3+52 x^2+54 x+29$
- $y^2=25 x^6+65 x^5+63 x^4+20 x^3+27 x^2+47 x+19$
- $y^2=50 x^6+63 x^5+59 x^4+40 x^3+54 x^2+27 x+38$
- $y^2=4 x^6+16 x^5+59 x^4+43 x^3+34 x^2+62 x+45$
- $y^2=8 x^6+32 x^5+51 x^4+19 x^3+x^2+57 x+23$
- $y^2=17 x^6+41 x^5+22 x^4+58 x^3+43 x^2+2 x+43$
- $y^2=34 x^6+15 x^5+44 x^4+49 x^3+19 x^2+4 x+19$
- $y^2=29 x^6+4 x^5+14 x^4+53 x^3+4 x^2+6 x+41$
- $y^2=58 x^6+8 x^5+28 x^4+39 x^3+8 x^2+12 x+15$
- $y^2=65 x^6+49 x^5+32 x^4+28 x^3+12 x^2+44 x+50$
- $y^2=63 x^6+31 x^5+64 x^4+56 x^3+24 x^2+21 x+33$
- $y^2=65 x^6+28 x^5+21 x^4+18 x^3+53 x^2+47 x+6$
- $y^2=63 x^6+56 x^5+42 x^4+36 x^3+39 x^2+27 x+12$
- $y^2=12 x^6+46 x^5+38 x^4+61 x^3+2 x^2+32 x+7$
- $y^2=24 x^6+25 x^5+9 x^4+55 x^3+4 x^2+64 x+14$
- $y^2=10 x^6+3 x^5+32 x^4+10 x^3+45 x^2+15 x+32$
- $y^2=20 x^6+6 x^5+64 x^4+20 x^3+23 x^2+30 x+64$
- and 388 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67^{2}}$.
Endomorphism algebra over $\F_{67}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-26}, \sqrt{34})\). |
| The base change of $A$ to $\F_{67^{2}}$ is 1.4489.dw 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-221}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.67.a_adw | $4$ | (not in LMFDB) |