Invariants
| Base field: | $\F_{89}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 18 x + 89 x^{2} )( 1 - 6 x + 89 x^{2} )$ |
| $1 - 24 x + 286 x^{2} - 2136 x^{3} + 7921 x^{4}$ | |
| Frobenius angles: | $\pm0.0969241796512$, $\pm0.396989011311$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $274$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6048$ | $62705664$ | $497235068064$ | $3935974331842560$ | $31180846014571686048$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $66$ | $7918$ | $705330$ | $62732446$ | $5583902946$ | $496981137166$ | $44231352188754$ | $3936589008026686$ | $350356404528573570$ | $31181719929964012078$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 274 curves (of which all are hyperelliptic):
- $y^2=3 x^6+60 x^5+19 x^4+68 x^3+8 x^2+59 x+38$
- $y^2=51 x^6+12 x^5+71 x^4+80 x^3+71 x^2+12 x+51$
- $y^2=41 x^6+58 x^5+87 x^4+75 x^3+67 x^2+36 x+28$
- $y^2=8 x^6+44 x^5+28 x^4+33 x^3+28 x^2+44 x+8$
- $y^2=86 x^5+77 x^4+37 x^3+52 x^2+5 x+87$
- $y^2=83 x^6+61 x^5+40 x^4+84 x^3+34 x^2+75 x+82$
- $y^2=47 x^6+42 x^5+87 x^4+78 x^3+87 x^2+42 x+47$
- $y^2=10 x^6+74 x^5+57 x^4+15 x^3+73 x^2+59 x+56$
- $y^2=70 x^6+27 x^5+13 x^4+48 x^3+18 x^2+53 x+30$
- $y^2=88 x^6+14 x^5+42 x^4+19 x^3+19 x^2+22$
- $y^2=4 x^6+26 x^5+22 x^4+47 x^3+50 x^2+35 x+39$
- $y^2=63 x^6+32 x^5+21 x^4+11 x^3+87 x^2+54 x+85$
- $y^2=51 x^6+88 x^5+88 x^4+12 x^3+88 x^2+79 x+46$
- $y^2=27 x^6+29 x^5+75 x^4+52 x^3+32 x^2+5 x+19$
- $y^2=35 x^6+33 x^5+4 x^4+43 x^3+45 x^2+31 x+33$
- $y^2=52 x^6+77 x^5+77 x^4+8 x^3+18 x^2+62 x+4$
- $y^2=83 x^6+28 x^5+4 x^4+28 x^3+68 x^2+82 x+70$
- $y^2=84 x^6+14 x^5+70 x^4+57 x^3+x^2+10 x+83$
- $y^2=45 x^6+60 x^5+56 x^4+18 x^3+55 x^2+28 x+26$
- $y^2=79 x^6+60 x^5+85 x^4+69 x^2+49 x+32$
- and 254 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$| The isogeny class factors as 1.89.as $\times$ 1.89.ag and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.89.am_cs | $2$ | (not in LMFDB) |
| 2.89.m_cs | $2$ | (not in LMFDB) |
| 2.89.y_la | $2$ | (not in LMFDB) |