| L(s) = 1 | − 3·3-s − 4·7-s + 6·9-s + 8·19-s + 12·21-s − 25-s − 9·27-s − 14·31-s − 2·37-s + 12·43-s − 2·49-s − 24·57-s + 8·61-s − 24·63-s − 10·67-s + 32·73-s + 3·75-s + 4·79-s + 9·81-s + 42·93-s − 14·97-s − 32·103-s − 28·109-s + 6·111-s + 121-s + 127-s − 36·129-s + ⋯ |
| L(s) = 1 | − 1.73·3-s − 1.51·7-s + 2·9-s + 1.83·19-s + 2.61·21-s − 1/5·25-s − 1.73·27-s − 2.51·31-s − 0.328·37-s + 1.82·43-s − 2/7·49-s − 3.17·57-s + 1.02·61-s − 3.02·63-s − 1.22·67-s + 3.74·73-s + 0.346·75-s + 0.450·79-s + 81-s + 4.35·93-s − 1.42·97-s − 3.15·103-s − 2.68·109-s + 0.569·111-s + 1/11·121-s + 0.0887·127-s − 3.16·129-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 69696 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 69696 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.698101458189890687450989475491, −9.401670233685537405973889044671, −8.798126319316295192274656678751, −7.62736396087440842811173385580, −7.57356519540538183281509096087, −6.66076665440645270819143387724, −6.61017530637467554226176574176, −5.84888418287605084778278372505, −5.26718062023912132586056594917, −5.18716225391118521175463046445, −3.92131200412791242288608029354, −3.66549703507533128595500156466, −2.64863885426300166607291973733, −1.27435416840477191188067329864, 0,
1.27435416840477191188067329864, 2.64863885426300166607291973733, 3.66549703507533128595500156466, 3.92131200412791242288608029354, 5.18716225391118521175463046445, 5.26718062023912132586056594917, 5.84888418287605084778278372505, 6.61017530637467554226176574176, 6.66076665440645270819143387724, 7.57356519540538183281509096087, 7.62736396087440842811173385580, 8.798126319316295192274656678751, 9.401670233685537405973889044671, 9.698101458189890687450989475491