Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 5 x + 67 x^{2} )^{2}$ |
| $1 + 10 x + 159 x^{2} + 670 x^{3} + 4489 x^{4}$ | |
| Frobenius angles: | $\pm0.598798062002$, $\pm0.598798062002$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $43$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5329$ | $21150801$ | $89930413456$ | $405950728871961$ | $1823036213535207889$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $78$ | $4708$ | $299004$ | $20145316$ | $1350272058$ | $90458036422$ | $6060703488414$ | $406067741306308$ | $27206534621379588$ | $1822837799155110628$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 43 curves (of which all are hyperelliptic):
- $y^2=23 x^6+29 x^5+24 x^4+5 x^3+24 x^2+29 x+23$
- $y^2=57 x^6+65 x^5+34 x^4+41 x^3+50 x^2+28 x+24$
- $y^2=46 x^6+20 x^5+24 x^4+6 x^3+20 x^2+51 x+49$
- $y^2=24 x^6+17 x^4+65 x^3+17 x^2+24$
- $y^2=15 x^6+10 x^4+11 x^3+10 x^2+15$
- $y^2=25 x^6+12 x^5+49 x^4+59 x^3+49 x^2+12 x+25$
- $y^2=15 x^6+39 x^5+52 x^4+65 x^3+52 x^2+39 x+15$
- $y^2=26 x^6+28 x^5+63 x^4+30 x^3+63 x^2+28 x+26$
- $y^2=10 x^6+15 x^5+57 x^4+29 x^3+57 x^2+15 x+10$
- $y^2=44 x^6+6 x^5+35 x^4+62 x^3+48 x^2+4 x+54$
- $y^2=40 x^6+38 x^5+11 x^4+7 x^3+11 x^2+38 x+40$
- $y^2=48 x^6+40 x^5+19 x^4+37 x^3+19 x^2+40 x+48$
- $y^2=41 x^6+4 x^5+25 x^4+18 x^3+45 x^2+33 x+56$
- $y^2=56 x^6+31 x^5+27 x^4+32 x^3+x^2+62 x+60$
- $y^2=35 x^6+56 x^5+23 x^4+17 x^3+23 x^2+56 x+35$
- $y^2=59 x^6+27 x^5+61 x^4+26 x^3+61 x^2+27 x+59$
- $y^2=37 x^6+11 x^5+61 x^4+66 x^3+61 x^2+11 x+37$
- $y^2=25 x^6+24 x^5+18 x^4+54 x^3+17 x^2+3 x+45$
- $y^2=45 x^6+52 x^5+13 x^4+59 x^3+64 x^2+45 x+47$
- $y^2=12 x^6+31 x^5+63 x^4+60 x^3+63 x^2+31 x+12$
- and 23 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$| The isogeny class factors as 1.67.f 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.