| L(s) = 1 | − 3-s + 4-s + 9-s − 12-s + 8·13-s + 16-s + 8·19-s − 25-s − 27-s + 2·31-s + 36-s + 16·37-s − 8·39-s − 20·43-s − 48-s + 8·52-s − 8·57-s + 20·61-s + 64-s − 20·67-s − 4·73-s + 75-s + 8·76-s − 2·79-s + 81-s − 2·93-s + 2·97-s + ⋯ |
| L(s) = 1 | − 0.577·3-s + 1/2·4-s + 1/3·9-s − 0.288·12-s + 2.21·13-s + 1/4·16-s + 1.83·19-s − 1/5·25-s − 0.192·27-s + 0.359·31-s + 1/6·36-s + 2.63·37-s − 1.28·39-s − 3.04·43-s − 0.144·48-s + 1.10·52-s − 1.05·57-s + 2.56·61-s + 1/8·64-s − 2.44·67-s − 0.468·73-s + 0.115·75-s + 0.917·76-s − 0.225·79-s + 1/9·81-s − 0.207·93-s + 0.203·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 259308 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 259308 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.024435147\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.024435147\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.804654554318459390164507311566, −8.437574389959171996814247300132, −8.000167698268580301677238135628, −7.45538149578601412402973602617, −7.00728426330403345958805784350, −6.39409357283054887478798556947, −6.07864651997567107362244436260, −5.68536165312647493892897914533, −5.07800539018688221972389717941, −4.49123641406362856214796748304, −3.71959442230100202249236284366, −3.36779260852424710508563371535, −2.63841008431534209471451574051, −1.53413432618226811661848805906, −1.01560111630863456380812991130,
1.01560111630863456380812991130, 1.53413432618226811661848805906, 2.63841008431534209471451574051, 3.36779260852424710508563371535, 3.71959442230100202249236284366, 4.49123641406362856214796748304, 5.07800539018688221972389717941, 5.68536165312647493892897914533, 6.07864651997567107362244436260, 6.39409357283054887478798556947, 7.00728426330403345958805784350, 7.45538149578601412402973602617, 8.000167698268580301677238135628, 8.437574389959171996814247300132, 8.804654554318459390164507311566