Invariants
| Base field: | $\F_{37}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 8 x + 37 x^{2} )^{2}$ |
| $1 - 16 x + 138 x^{2} - 592 x^{3} + 1369 x^{4}$ | |
| Frobenius angles: | $\pm0.271573428246$, $\pm0.271573428246$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $18$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $900$ | $1904400$ | $2604060900$ | $3522378240000$ | $4809582006322500$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $22$ | $1390$ | $51406$ | $1879438$ | $69358342$ | $2565646270$ | $94930703806$ | $3512473032478$ | $129961731836662$ | $4808584546343950$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 18 curves (of which all are hyperelliptic):
- $y^2=27 x^6+26 x^5+20 x^4+8 x^3+20 x^2+26 x+27$
- $y^2=6 x^6+19 x^5+5 x^4+17 x^3+35 x^2+6 x+23$
- $y^2=19 x^6+27 x^5+29 x^4+12 x^3+29 x^2+27 x+19$
- $y^2=36 x^6+19 x^5+22 x^4+22 x^3+22 x^2+19 x+36$
- $y^2=19 x^6+24 x^4+24 x^2+19$
- $y^2=28 x^6+11 x^5+15 x^4+13 x^3+15 x^2+11 x+28$
- $y^2=24 x^6+29 x^5+27 x^4+3 x^3+9 x^2+32 x+5$
- $y^2=17 x^6+5 x^4+5 x^2+17$
- $y^2=x^6+4 x^3+27$
- $y^2=11 x^6+25 x^5+18 x^4+2 x^3+18 x^2+25 x+11$
- $y^2=27 x^6+3 x^5+25 x^4+23 x^3+11 x+2$
- $y^2=23 x^6+5 x^5+21 x^4+28 x^3+22 x^2+4 x+14$
- $y^2=23 x^6+7 x^5+6 x^4+6 x^3+24 x^2+x+29$
- $y^2=36 x^6+10 x^5+10 x^4+30 x^3+10 x^2+10 x+36$
- $y^2=23 x^6+17 x^5+24 x^4+23 x^3+4 x^2+35 x+22$
- $y^2=6 x^6+7 x^5+5 x^4+19 x^3+5 x^2+7 x+6$
- $y^2=x^6+9 x^3+26$
- $y^2=15 x^6+35 x^5+31 x^4+15 x^3+30 x^2+36 x+15$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37}$.
Endomorphism algebra over $\F_{37}$| The isogeny class factors as 1.37.ai 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-21}) \)$)$ |
Base change
This is a primitive isogeny class.