Invariants
This isogeny class is not simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$A(\F_{q^r})$ |
$2907$ |
$8450649$ |
$22164456384$ |
$62199894929481$ |
$174887469961244307$ |
Point counts of the curve
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
$C(\F_{q^r})$ |
$54$ |
$3004$ |
$148878$ |
$7882900$ |
$418195494$ |
$22164551638$ |
$1174711139838$ |
$62259693229924$ |
$3299763591802134$ |
$174887469556975564$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 104 curves (of which all are hyperelliptic):
- $y^2=46 x^6+20 x^5+6 x^4+12 x^3+42 x^2+6 x+49$
- $y^2=39 x^6+40 x^5+12 x^4+24 x^3+31 x^2+12 x+45$
- $y^2=21 x^6+14 x^5+21 x^4+51 x^3+8 x^2+11 x+21$
- $y^2=42 x^6+28 x^5+42 x^4+49 x^3+16 x^2+22 x+42$
- $y^2=x^6+x^3+52$
- $y^2=2 x^6+2 x^3+51$
- $y^2=28 x^6+16 x^5+39 x^4+24 x^3+5 x^2+x+23$
- $y^2=3 x^6+32 x^5+25 x^4+48 x^3+10 x^2+2 x+46$
- $y^2=48 x^6+26 x^5+44 x^4+11 x^3+19 x^2+19 x+17$
- $y^2=43 x^6+52 x^5+35 x^4+22 x^3+38 x^2+38 x+34$
- $y^2=31 x^6+32 x^5+3 x^4+8 x^3+29 x^2+13 x+41$
- $y^2=9 x^6+11 x^5+6 x^4+16 x^3+5 x^2+26 x+29$
- $y^2=51 x^6+45 x^5+27 x^4+19 x^3+28 x^2+22 x+25$
- $y^2=49 x^6+37 x^5+x^4+38 x^3+3 x^2+44 x+50$
- $y^2=38 x^6+17 x^5+23 x^4+27 x^3+23 x^2+17 x+38$
- $y^2=23 x^6+34 x^5+46 x^4+x^3+46 x^2+34 x+23$
- $y^2=40 x^6+35 x^5+25 x^4+19 x^3+25 x^2+35 x+40$
- $y^2=27 x^6+17 x^5+50 x^4+38 x^3+50 x^2+17 x+27$
- $y^2=38 x^6+7 x^5+6 x^4+49 x^3+28 x^2+26 x+44$
- $y^2=43 x^6+38 x^5+52 x^4+44 x^3+17 x^2+23 x+16$
- and 84 more
- $y^2=33 x^6+23 x^5+51 x^4+35 x^3+34 x^2+46 x+32$
- $y^2=14 x^6+43 x^5+33 x^4+28 x^3+33 x^2+43 x+14$
- $y^2=28 x^6+33 x^5+13 x^4+3 x^3+13 x^2+33 x+28$
- $y^2=14 x^6+46 x^5+35 x^4+x^3+36 x^2+26 x+34$
- $y^2=28 x^6+39 x^5+17 x^4+2 x^3+19 x^2+52 x+15$
- $y^2=26 x^6+26 x^5+44 x^4+45 x^3+17 x^2+35 x+29$
- $y^2=52 x^6+52 x^5+35 x^4+37 x^3+34 x^2+17 x+5$
- $y^2=19 x^6+11 x^5+23 x^4+7 x^3+23 x^2+11 x+19$
- $y^2=38 x^6+22 x^5+46 x^4+14 x^3+46 x^2+22 x+38$
- $y^2=46 x^6+16 x^5+44 x^4+x^3+47 x^2+52 x+4$
- $y^2=39 x^6+32 x^5+35 x^4+2 x^3+41 x^2+51 x+8$
- $y^2=50 x^6+31 x^5+19 x^4+31 x^3+27 x^2+23 x+25$
- $y^2=47 x^6+9 x^5+38 x^4+9 x^3+x^2+46 x+50$
- $y^2=43 x^6+8 x^5+20 x^4+41 x^3+3 x^2+5 x+36$
- $y^2=33 x^6+16 x^5+40 x^4+29 x^3+6 x^2+10 x+19$
- $y^2=x^6+x^3+6$
- $y^2=2 x^6+2 x^3+12$
- $y^2=24 x^6+45 x^5+32 x^4+33 x^3+26 x^2+23 x+16$
- $y^2=48 x^6+37 x^5+11 x^4+13 x^3+52 x^2+46 x+32$
- $y^2=11 x^6+11 x^5+33 x^4+25 x^3+33 x^2+11 x+11$
- $y^2=22 x^6+22 x^5+13 x^4+50 x^3+13 x^2+22 x+22$
- $y^2=3 x^6+6 x^5+20 x^4+42 x^3+20 x^2+6 x+3$
- $y^2=6 x^6+12 x^5+40 x^4+31 x^3+40 x^2+12 x+6$
- $y^2=49 x^6+50 x^5+30 x^4+36 x^3+30 x^2+50 x+49$
- $y^2=45 x^6+47 x^5+7 x^4+19 x^3+7 x^2+47 x+45$
- $y^2=27 x^6+11 x^5+35 x^4+41 x^3+31 x^2+38 x+31$
- $y^2=x^6+22 x^5+17 x^4+29 x^3+9 x^2+23 x+9$
- $y^2=10 x^6+26 x^5+15 x^4+23 x^3+14 x^2+13 x+40$
- $y^2=20 x^6+52 x^5+30 x^4+46 x^3+28 x^2+26 x+27$
- $y^2=25 x^6+11 x^5+15 x^4+13 x^3+46 x^2+8 x+16$
- $y^2=50 x^6+22 x^5+30 x^4+26 x^3+39 x^2+16 x+32$
- $y^2=34 x^6+6 x^5+19 x^4+21 x^3+49 x^2+26 x+25$
- $y^2=15 x^6+12 x^5+38 x^4+42 x^3+45 x^2+52 x+50$
- $y^2=46 x^6+48 x^5+18 x^4+52 x^3+9 x^2+40 x+8$
- $y^2=39 x^6+43 x^5+36 x^4+51 x^3+18 x^2+27 x+16$
- $y^2=50 x^6+31 x^5+31 x^4+36 x^3+41 x^2+25 x+27$
- $y^2=35 x^6+43 x^5+36 x^4+32 x^3+50 x^2+29 x+27$
- $y^2=17 x^6+33 x^5+19 x^4+11 x^3+47 x^2+5 x+1$
- $y^2=3 x^6+16 x^5+42 x^4+38 x^3+42 x^2+16 x+3$
- $y^2=6 x^6+32 x^5+31 x^4+23 x^3+31 x^2+32 x+6$
- $y^2=16 x^6+27 x^5+48 x^4+24 x^3+48 x^2+27 x+16$
- $y^2=32 x^6+x^5+43 x^4+48 x^3+43 x^2+x+32$
- $y^2=50 x^6+25 x^5+23 x^4+33 x^3+33 x^2+40 x+38$
- $y^2=47 x^6+50 x^5+46 x^4+13 x^3+13 x^2+27 x+23$
- $y^2=47 x^6+11 x^5+28 x^4+49 x^3+28 x^2+11 x+47$
- $y^2=41 x^6+22 x^5+3 x^4+45 x^3+3 x^2+22 x+41$
- $y^2=21 x^6+45 x^5+51 x^4+15 x^3+51 x^2+45 x+21$
- $y^2=42 x^6+37 x^5+49 x^4+30 x^3+49 x^2+37 x+42$
- $y^2=37 x^6+33 x^5+19 x^4+10 x^3+32 x^2+40 x+10$
- $y^2=21 x^6+13 x^5+38 x^4+20 x^3+11 x^2+27 x+20$
- $y^2=27 x^6+12 x^5+16 x^4+39 x^3+16 x^2+12 x+27$
- $y^2=x^6+24 x^5+32 x^4+25 x^3+32 x^2+24 x+1$
- $y^2=x^6+x^3+17$
- $y^2=2 x^6+2 x^3+34$
- $y^2=7 x^6+33 x^5+22 x^4+50 x^3+11 x^2+10 x+44$
- $y^2=14 x^6+13 x^5+44 x^4+47 x^3+22 x^2+20 x+35$
- $y^2=5 x^6+10 x^5+48 x^4+7 x^3+14 x^2+49 x+28$
- $y^2=10 x^6+20 x^5+43 x^4+14 x^3+28 x^2+45 x+3$
- $y^2=21 x^6+18 x^5+39 x^4+43 x^3+39 x^2+18 x+21$
- $y^2=42 x^6+36 x^5+25 x^4+33 x^3+25 x^2+36 x+42$
- $y^2=25 x^6+24 x^5+38 x^4+37 x^3+38 x^2+24 x+25$
- $y^2=50 x^6+48 x^5+23 x^4+21 x^3+23 x^2+48 x+50$
- $y^2=19 x^6+9 x^5+38 x^4+14 x^3+48 x^2+42 x+15$
- $y^2=38 x^6+18 x^5+23 x^4+28 x^3+43 x^2+31 x+30$
- $y^2=38 x^6+32 x^5+8 x^4+8 x^3+37 x^2+45 x+30$
- $y^2=2 x^6+43 x^5+18 x^3+29 x^2+40 x+43$
- $y^2=14 x^6+52 x^5+9 x^4+34 x^3+10 x^2+3 x+17$
- $y^2=28 x^6+51 x^5+18 x^4+15 x^3+20 x^2+6 x+34$
- $y^2=40 x^6+18 x^5+51 x^4+47 x^3+24 x^2+28 x+35$
- $y^2=27 x^6+36 x^5+49 x^4+41 x^3+48 x^2+3 x+17$
- $y^2=35 x^6+8 x^5+47 x^4+47 x^3+47 x^2+8 x+35$
- $y^2=17 x^6+16 x^5+41 x^4+41 x^3+41 x^2+16 x+17$
- $y^2=x^6+x^3+42$
- $y^2=2 x^6+2 x^3+31$
- $y^2=19 x^6+18 x^5+45 x^4+35 x^3+50 x^2+31 x+38$
- $y^2=38 x^6+36 x^5+37 x^4+17 x^3+47 x^2+9 x+23$
- $y^2=12 x^6+34 x^5+13 x^4+30 x^3+13 x^2+34 x+12$
- $y^2=24 x^6+15 x^5+26 x^4+7 x^3+26 x^2+15 x+24$
- $y^2=43 x^6+44 x^5+37 x^4+26 x^3+35 x^2+13 x+20$
- $y^2=33 x^6+35 x^5+21 x^4+52 x^3+17 x^2+26 x+40$
- $y^2=45 x^6+48 x^5+37 x^4+18 x^3+37 x^2+48 x+45$
- $y^2=37 x^6+43 x^5+21 x^4+36 x^3+21 x^2+43 x+37$
- $y^2=11 x^6+14 x^5+33 x^4+37 x^3+33 x^2+14 x+11$
- $y^2=22 x^6+28 x^5+13 x^4+21 x^3+13 x^2+28 x+22$
All geometric endomorphisms are defined over $\F_{53^{2}}$.
Endomorphism algebra over $\F_{53}$
The isogeny class factors as 1.53.ad $\times$ 1.53.d and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
|
Endomorphism algebra over $\overline{\F}_{53}$
Base change
This is a primitive isogeny class.
Twists