Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 10 x + 67 x^{2} )^{2}$ |
$1 + 20 x + 234 x^{2} + 1340 x^{3} + 4489 x^{4}$ | |
Frobenius angles: | $\pm0.709171043648$, $\pm0.709171043648$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $32$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6084$ | $20466576$ | $89852460516$ | $406383023195136$ | $1822809319723535364$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $88$ | $4558$ | $298744$ | $20166766$ | $1350104008$ | $90457545022$ | $6060721390504$ | $406067635793758$ | $27206534158316728$ | $1822837809729656878$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 32 curves (of which all are hyperelliptic):
- $y^2=33 x^6+62 x^5+13 x^4+26 x^3+13 x^2+62 x+33$
- $y^2=50 x^6+56 x^5+38 x^4+56 x^3+38 x^2+56 x+50$
- $y^2=26 x^6+59 x^5+11 x^4+10 x^3+63 x^2+15 x+36$
- $y^2=63 x^6+x^5+57 x^4+63 x^3+57 x^2+x+63$
- $y^2=25 x^6+25 x^4+25 x^2+25$
- $y^2=27 x^6+27 x^5+35 x^4+10 x^3+14 x^2+7 x+43$
- $y^2=38 x^6+19 x^5+15 x^4+4 x^3+x^2+22 x+4$
- $y^2=9 x^6+23 x^5+14 x^4+33 x^3+59 x^2+19 x+17$
- $y^2=43 x^6+21 x^5+56 x^4+50 x^3+4 x^2+36 x+8$
- $y^2=19 x^6+46 x^5+5 x^4+8 x^3+63 x^2+6 x+15$
- $y^2=31 x^6+41 x^5+27 x^4+22 x^3+45 x^2+27 x+40$
- $y^2=54 x^6+10 x^5+47 x^4+4 x^3+33 x^2+6 x+24$
- $y^2=47 x^6+32 x^5+28 x^4+28 x^3+11 x^2+56 x+54$
- $y^2=56 x^5+65 x^4+2 x^3+59 x^2+58 x+36$
- $y^2=21 x^6+21 x^5+47 x^4+x^3+12 x^2+46 x+15$
- $y^2=32 x^6+49 x^4+49 x^2+32$
- $y^2=12 x^6+2 x^5+x^4+46 x^3+x^2+2 x+12$
- $y^2=48 x^6+6 x^5+8 x^4+3 x^3+8 x^2+6 x+48$
- $y^2=56 x^6+58 x^5+43 x^4+54 x^3+43 x^2+6 x+9$
- $y^2=13 x^6+17 x^5+48 x^4+66 x^3+10 x^2+6 x+9$
- and 12 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$The isogeny class factors as 1.67.k 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-42}) \)$)$ |
Base change
This is a primitive isogeny class.