Invariants
| Base field: | $\F_{29}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 9 x + 29 x^{2} )( 1 + 9 x + 29 x^{2} )$ |
| $1 - 23 x^{2} + 841 x^{4}$ | |
| Frobenius angles: | $\pm0.185103371333$, $\pm0.814896628667$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $66$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $819$ | $670761$ | $594869184$ | $501880149225$ | $420707196688779$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $30$ | $796$ | $24390$ | $709588$ | $20511150$ | $594915046$ | $17249876310$ | $500246583268$ | $14507145975870$ | $420707160077356$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 66 curves (of which all are hyperelliptic):
- $y^2=25 x^6+20 x^5+25 x^4+26 x^3+11 x^2+x+22$
- $y^2=21 x^6+11 x^5+21 x^4+23 x^3+22 x^2+2 x+15$
- $y^2=20 x^6+28 x^5+14 x^4+14 x^3+28 x^2+8 x+6$
- $y^2=11 x^6+27 x^5+28 x^4+28 x^3+27 x^2+16 x+12$
- $y^2=7 x^6+20 x^5+24 x^4+6 x^3+21 x^2+2 x+11$
- $y^2=14 x^6+11 x^5+19 x^4+12 x^3+13 x^2+4 x+22$
- $y^2=24 x^6+6 x^5+26 x^4+16 x^3+27 x^2+6 x+16$
- $y^2=19 x^6+12 x^5+23 x^4+3 x^3+25 x^2+12 x+3$
- $y^2=x^6+x^3+24$
- $y^2=2 x^6+2 x^3+19$
- $y^2=x^6+x^3+4$
- $y^2=2 x^6+2 x^3+8$
- $y^2=15 x^6+15 x^5+9 x^4+25 x^3+8 x^2+12 x+14$
- $y^2=x^6+x^5+18 x^4+21 x^3+16 x^2+24 x+28$
- $y^2=5 x^6+19 x^5+14 x^4+17 x^3+14 x^2+19 x+5$
- $y^2=10 x^6+9 x^5+28 x^4+5 x^3+28 x^2+9 x+10$
- $y^2=x^6+19 x^5+4 x^4+7 x^3+11 x^2+x+17$
- $y^2=27 x^6+13 x^5+17 x^4+8 x^3+9 x^2+17 x+1$
- $y^2=25 x^6+26 x^5+5 x^4+16 x^3+18 x^2+5 x+2$
- $y^2=16 x^6+12 x^5+20 x^4+x^3+3 x^2+8 x+1$
- and 46 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29^{2}}$.
Endomorphism algebra over $\F_{29}$| The isogeny class factors as 1.29.aj $\times$ 1.29.j and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{29^{2}}$ is 1.841.ax 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-35}) \)$)$ |
Base change
This is a primitive isogeny class.