| L(s) = 1 | − 2·3-s + 4-s + 2·5-s + 3·9-s + 11-s − 2·12-s − 4·15-s + 16-s + 2·20-s + 3·25-s − 4·27-s − 16·31-s − 2·33-s + 3·36-s − 20·37-s + 44-s + 6·45-s − 2·48-s + 2·49-s + 28·53-s + 2·55-s − 8·59-s − 4·60-s + 64-s − 8·67-s + 16·71-s − 6·75-s + ⋯ |
| L(s) = 1 | − 1.15·3-s + 1/2·4-s + 0.894·5-s + 9-s + 0.301·11-s − 0.577·12-s − 1.03·15-s + 1/4·16-s + 0.447·20-s + 3/5·25-s − 0.769·27-s − 2.87·31-s − 0.348·33-s + 1/2·36-s − 3.28·37-s + 0.150·44-s + 0.894·45-s − 0.288·48-s + 2/7·49-s + 3.84·53-s + 0.269·55-s − 1.04·59-s − 0.516·60-s + 1/8·64-s − 0.977·67-s + 1.89·71-s − 0.692·75-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1197900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1197900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.40696925033699638160691249365, −7.27752953900878357828554051261, −6.87984264875203216093880454454, −6.59167185110691005638218150143, −5.88014804790306627418533622087, −5.55307889866064846829275639149, −5.39233288337080961598018021053, −4.92089940314369655781504062688, −4.06246632062950272760150417569, −3.75484499233248573080193197253, −3.12548788757864162693227054094, −2.18827740998320422124385016029, −1.85410703674039090636159152963, −1.17775005180092691264201056199, 0,
1.17775005180092691264201056199, 1.85410703674039090636159152963, 2.18827740998320422124385016029, 3.12548788757864162693227054094, 3.75484499233248573080193197253, 4.06246632062950272760150417569, 4.92089940314369655781504062688, 5.39233288337080961598018021053, 5.55307889866064846829275639149, 5.88014804790306627418533622087, 6.59167185110691005638218150143, 6.87984264875203216093880454454, 7.27752953900878357828554051261, 7.40696925033699638160691249365