Properties

Label 4-72e3-1.1-c1e2-0-9
Degree $4$
Conductor $373248$
Sign $1$
Analytic cond. $23.7986$
Root an. cond. $2.20870$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·5-s + 2·7-s + 8-s − 2·10-s − 2·13-s + 2·14-s + 16-s + 2·17-s + 2·19-s − 2·20-s + 6·23-s − 2·26-s + 2·28-s − 2·29-s + 5·31-s + 32-s + 2·34-s − 4·35-s − 4·37-s + 2·38-s − 2·40-s − 5·41-s + 2·43-s + 6·46-s + 6·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.894·5-s + 0.755·7-s + 0.353·8-s − 0.632·10-s − 0.554·13-s + 0.534·14-s + 1/4·16-s + 0.485·17-s + 0.458·19-s − 0.447·20-s + 1.25·23-s − 0.392·26-s + 0.377·28-s − 0.371·29-s + 0.898·31-s + 0.176·32-s + 0.342·34-s − 0.676·35-s − 0.657·37-s + 0.324·38-s − 0.316·40-s − 0.780·41-s + 0.304·43-s + 0.884·46-s + 0.875·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(373248\)    =    \(2^{9} \cdot 3^{6}\)
Sign: $1$
Analytic conductor: \(23.7986\)
Root analytic conductor: \(2.20870\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 373248,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.706567001\)
\(L(\frac12)\) \(\approx\) \(2.706567001\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_1$ \( 1 - T \)
3 \( 1 \)
good5$D_{4}$ \( 1 + 2 T + 4 T^{2} + 2 p T^{3} + p^{2} T^{4} \) 2.5.c_e
7$C_2^2$ \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \) 2.7.ac_c
11$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \) 2.11.a_ac
13$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.13.c_s
17$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.17.ac_ao
19$D_{4}$ \( 1 - 2 T - 4 T^{2} - 2 p T^{3} + p^{2} T^{4} \) 2.19.ac_ae
23$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) 2.23.ag_t
29$D_{4}$ \( 1 + 2 T + 4 T^{2} + 2 p T^{3} + p^{2} T^{4} \) 2.29.c_e
31$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + p T^{2} ) \) 2.31.af_ck
37$D_{4}$ \( 1 + 4 T + 38 T^{2} + 4 p T^{3} + p^{2} T^{4} \) 2.37.e_bm
41$D_{4}$ \( 1 + 5 T + 4 T^{2} + 5 p T^{3} + p^{2} T^{4} \) 2.41.f_e
43$D_{4}$ \( 1 - 2 T - 16 T^{2} - 2 p T^{3} + p^{2} T^{4} \) 2.43.ac_aq
47$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \) 2.47.ag_dq
53$D_{4}$ \( 1 + 2 T + 70 T^{2} + 2 p T^{3} + p^{2} T^{4} \) 2.53.c_cs
59$D_{4}$ \( 1 - 6 T + 106 T^{2} - 6 p T^{3} + p^{2} T^{4} \) 2.59.ag_ec
61$D_{4}$ \( 1 - 2 T - 88 T^{2} - 2 p T^{3} + p^{2} T^{4} \) 2.61.ac_adk
67$D_{4}$ \( 1 - 14 T + 128 T^{2} - 14 p T^{3} + p^{2} T^{4} \) 2.67.ao_ey
71$D_{4}$ \( 1 + 3 T - 50 T^{2} + 3 p T^{3} + p^{2} T^{4} \) 2.71.d_aby
73$D_{4}$ \( 1 - 2 T + 134 T^{2} - 2 p T^{3} + p^{2} T^{4} \) 2.73.ac_fe
79$D_{4}$ \( 1 - 14 T + 155 T^{2} - 14 p T^{3} + p^{2} T^{4} \) 2.79.ao_fz
83$D_{4}$ \( 1 + 6 T + 136 T^{2} + 6 p T^{3} + p^{2} T^{4} \) 2.83.g_fg
89$D_{4}$ \( 1 + 4 T + 73 T^{2} + 4 p T^{3} + p^{2} T^{4} \) 2.89.e_cv
97$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 13 T + p T^{2} ) \) 2.97.e_cz
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.7412305948, −12.4834068543, −12.0665737071, −11.6769146090, −11.4057718374, −10.9771969804, −10.5597725541, −10.0968574986, −9.56678592682, −9.14404043651, −8.49208927116, −8.13016381145, −7.78460344950, −7.23156284254, −6.92923448743, −6.45232359612, −5.59054556232, −5.29204066357, −4.89331241160, −4.26057010935, −3.83871355389, −3.20119760311, −2.64828856279, −1.82201570873, −0.858175811997, 0.858175811997, 1.82201570873, 2.64828856279, 3.20119760311, 3.83871355389, 4.26057010935, 4.89331241160, 5.29204066357, 5.59054556232, 6.45232359612, 6.92923448743, 7.23156284254, 7.78460344950, 8.13016381145, 8.49208927116, 9.14404043651, 9.56678592682, 10.0968574986, 10.5597725541, 10.9771969804, 11.4057718374, 11.6769146090, 12.0665737071, 12.4834068543, 12.7412305948

Graph of the $Z$-function along the critical line