L(s) = 1 | + 2-s + 4-s − 2·5-s + 2·7-s + 8-s − 2·10-s − 2·13-s + 2·14-s + 16-s + 2·17-s + 2·19-s − 2·20-s + 6·23-s − 2·26-s + 2·28-s − 2·29-s + 5·31-s + 32-s + 2·34-s − 4·35-s − 4·37-s + 2·38-s − 2·40-s − 5·41-s + 2·43-s + 6·46-s + 6·47-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s − 0.894·5-s + 0.755·7-s + 0.353·8-s − 0.632·10-s − 0.554·13-s + 0.534·14-s + 1/4·16-s + 0.485·17-s + 0.458·19-s − 0.447·20-s + 1.25·23-s − 0.392·26-s + 0.377·28-s − 0.371·29-s + 0.898·31-s + 0.176·32-s + 0.342·34-s − 0.676·35-s − 0.657·37-s + 0.324·38-s − 0.316·40-s − 0.780·41-s + 0.304·43-s + 0.884·46-s + 0.875·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.706567001\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.706567001\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.7412305948, −12.4834068543, −12.0665737071, −11.6769146090, −11.4057718374, −10.9771969804, −10.5597725541, −10.0968574986, −9.56678592682, −9.14404043651, −8.49208927116, −8.13016381145, −7.78460344950, −7.23156284254, −6.92923448743, −6.45232359612, −5.59054556232, −5.29204066357, −4.89331241160, −4.26057010935, −3.83871355389, −3.20119760311, −2.64828856279, −1.82201570873, −0.858175811997,
0.858175811997, 1.82201570873, 2.64828856279, 3.20119760311, 3.83871355389, 4.26057010935, 4.89331241160, 5.29204066357, 5.59054556232, 6.45232359612, 6.92923448743, 7.23156284254, 7.78460344950, 8.13016381145, 8.49208927116, 9.14404043651, 9.56678592682, 10.0968574986, 10.5597725541, 10.9771969804, 11.4057718374, 11.6769146090, 12.0665737071, 12.4834068543, 12.7412305948