Invariants
Base field: | $\F_{37}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 4 x + 38 x^{2} + 148 x^{3} + 1369 x^{4}$ |
Frobenius angles: | $\pm0.384318689302$, $\pm0.739880868478$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.4070400.3 |
Galois group: | $D_{4}$ |
Jacobians: | $140$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1560$ | $1959360$ | $2568323160$ | $3516972825600$ | $4806787550799000$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $42$ | $1430$ | $50706$ | $1876558$ | $69318042$ | $2565649190$ | $94932745026$ | $3512479472158$ | $129961753649802$ | $4808584293572150$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 140 curves (of which all are hyperelliptic):
- $y^2=29 x^6+8 x^5+14 x^4+16 x^3+7 x^2+31 x+30$
- $y^2=6 x^6+30 x^5+18 x^4+2 x^3+30 x^2+28 x+34$
- $y^2=34 x^6+22 x^5+30 x^4+x^3+32 x^2+13$
- $y^2=34 x^6+11 x^5+6 x^4+22 x^3+30 x^2+15 x+35$
- $y^2=32 x^6+31 x^4+22 x^3+19 x^2+3 x+7$
- $y^2=4 x^6+13 x^5+35 x^4+2 x^3+18 x^2+6 x+10$
- $y^2=22 x^6+17 x^5+28 x^4+15 x^3+24 x^2+23 x+12$
- $y^2=15 x^6+25 x^5+11 x^4+12 x^3+26 x^2+9 x+35$
- $y^2=12 x^6+7 x^5+4 x^4+19 x^3+33 x^2+4 x+31$
- $y^2=27 x^5+2 x^4+25 x^3+14 x^2+9 x+9$
- $y^2=3 x^6+24 x^5+6 x^4+24 x^3+24 x^2+21 x+36$
- $y^2=8 x^6+30 x^5+8 x^4+6 x^3+34 x^2+16 x+15$
- $y^2=36 x^6+35 x^5+13 x^4+14 x^3+8 x^2+3 x+31$
- $y^2=18 x^6+24 x^5+10 x^4+9 x^3+5 x^2+x+17$
- $y^2=21 x^6+8 x^4+31 x^3+14 x^2+10 x+23$
- $y^2=31 x^6+30 x^5+3 x^4+35 x^3+23 x^2+8 x+34$
- $y^2=14 x^6+36 x^5+32 x^4+18 x^3+27 x^2+34 x+2$
- $y^2=15 x^6+6 x^5+14 x^4+12 x^3+30 x^2+34 x+29$
- $y^2=6 x^6+5 x^5+34 x^4+29 x^2+16 x$
- $y^2=33 x^6+3 x^5+5 x^4+14 x^3+4 x^2+28 x+28$
- and 120 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37}$.
Endomorphism algebra over $\F_{37}$The endomorphism algebra of this simple isogeny class is 4.0.4070400.3. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.37.ae_bm | $2$ | (not in LMFDB) |