Invariants
Base field: | $\F_{23}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 9 x + 23 x^{2} )( 1 + 3 x + 23 x^{2} )$ |
$1 - 6 x + 19 x^{2} - 138 x^{3} + 529 x^{4}$ | |
Frobenius angles: | $\pm0.112386341891$, $\pm0.601257449372$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $48$ |
Isomorphism classes: | 222 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $405$ | $280665$ | $144575280$ | $78177832425$ | $41465494689525$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $18$ | $532$ | $11880$ | $279364$ | $6442398$ | $148040494$ | $3404824434$ | $78311980036$ | $1801156082040$ | $41426510261332$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):
- $y^2=10 x^6+13 x^4+21 x^3+13 x^2+10$
- $y^2=15 x^6+14 x^5+15 x^4+18 x^3+5 x^2+9 x+15$
- $y^2=21 x^6+8 x^5+20 x^4+10 x^3+20 x^2+8 x+21$
- $y^2=18 x^6+19 x^5+6 x^4+22 x^3+6 x^2+19 x+18$
- $y^2=19 x^6+10 x^5+12 x^4+12 x^2+10 x+19$
- $y^2=20 x^6+11 x^5+x^4+2 x^3+16 x^2+14 x+20$
- $y^2=17 x^6+21 x^5+x^4+8 x^3+22 x^2+20 x+19$
- $y^2=x^6+20 x^4+11 x^3+20 x^2+12 x+7$
- $y^2=5 x^6+6 x^5+11 x^4+15 x^3+11 x^2+6 x+5$
- $y^2=21 x^6+21 x^5+13 x^4+x^3+3 x^2+14 x+20$
- $y^2=3 x^6+10 x^5+8 x^4+2 x^3+3 x^2+8 x+19$
- $y^2=21 x^6+5 x^5+2 x^4+13 x^3+2 x^2+5$
- $y^2=2 x^6+20 x^5+2 x^4+x^3+18 x^2+20 x+15$
- $y^2=20 x^6+20 x^5+4 x^4+x^3+7 x^2+8 x+8$
- $y^2=9 x^6+21 x^5+14 x^4+10 x^3+6 x^2+13 x+3$
- $y^2=9 x^6+20 x^5+15 x^4+7 x^3+4 x^2+22 x+19$
- $y^2=7 x^6+13 x^5+12 x^4+13 x^3+x^2+10 x+8$
- $y^2=21 x^6+6 x^5+22 x^4+6 x^3+14 x^2+3 x+22$
- $y^2=3 x^6+14 x^5+3 x^3+20 x^2+19 x+15$
- $y^2=4 x^6+8 x^5+16 x^4+16 x^3+22 x^2+3 x+18$
- and 28 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23}$.
Endomorphism algebra over $\F_{23}$The isogeny class factors as 1.23.aj $\times$ 1.23.d and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.23.am_cv | $2$ | (not in LMFDB) |
2.23.g_t | $2$ | (not in LMFDB) |
2.23.m_cv | $2$ | (not in LMFDB) |