-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 405, 'abvar_counts': [405, 280665, 144575280, 78177832425, 41465494689525, 21915306183133440, 11592832870396436805, 6132688316249673249225, 3244157070880396821585840, 1716155791883303691727092825], 'abvar_counts_str': '405 280665 144575280 78177832425 41465494689525 21915306183133440 11592832870396436805 6132688316249673249225 3244157070880396821585840 1716155791883303691727092825 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.112386341891082, 0.60125744937186], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 18, 'curve_counts': [18, 532, 11880, 279364, 6442398, 148040494, 3404824434, 78311980036, 1801156082040, 41426510261332], 'curve_counts_str': '18 532 11880 279364 6442398 148040494 3404824434 78311980036 1801156082040 41426510261332 ', 'curves': ['y^2=10*x^6+13*x^4+21*x^3+13*x^2+10', 'y^2=15*x^6+14*x^5+15*x^4+18*x^3+5*x^2+9*x+15', 'y^2=21*x^6+8*x^5+20*x^4+10*x^3+20*x^2+8*x+21', 'y^2=18*x^6+19*x^5+6*x^4+22*x^3+6*x^2+19*x+18', 'y^2=19*x^6+10*x^5+12*x^4+12*x^2+10*x+19', 'y^2=20*x^6+11*x^5+x^4+2*x^3+16*x^2+14*x+20', 'y^2=17*x^6+21*x^5+x^4+8*x^3+22*x^2+20*x+19', 'y^2=x^6+20*x^4+11*x^3+20*x^2+12*x+7', 'y^2=5*x^6+6*x^5+11*x^4+15*x^3+11*x^2+6*x+5', 'y^2=21*x^6+21*x^5+13*x^4+x^3+3*x^2+14*x+20', 'y^2=3*x^6+10*x^5+8*x^4+2*x^3+3*x^2+8*x+19', 'y^2=21*x^6+5*x^5+2*x^4+13*x^3+2*x^2+5', 'y^2=2*x^6+20*x^5+2*x^4+x^3+18*x^2+20*x+15', 'y^2=20*x^6+20*x^5+4*x^4+x^3+7*x^2+8*x+8', 'y^2=9*x^6+21*x^5+14*x^4+10*x^3+6*x^2+13*x+3', 'y^2=9*x^6+20*x^5+15*x^4+7*x^3+4*x^2+22*x+19', 'y^2=7*x^6+13*x^5+12*x^4+13*x^3+x^2+10*x+8', 'y^2=21*x^6+6*x^5+22*x^4+6*x^3+14*x^2+3*x+22', 'y^2=3*x^6+14*x^5+3*x^3+20*x^2+19*x+15', 'y^2=4*x^6+8*x^5+16*x^4+16*x^3+22*x^2+3*x+18', 'y^2=14*x^6+15*x^5+4*x^4+15*x^3+4*x^2+15*x+14', 'y^2=5*x^6+6*x^5+9*x^4+3*x^3+14*x^2+9*x+21', 'y^2=20*x^6+17*x^5+9*x^4+22*x^3+5*x^2+20*x+3', 'y^2=8*x^6+11*x^5+13*x^4+6*x^3+11*x^2+x+1', 'y^2=14*x^6+x^5+19*x^4+4*x^3+4*x^2+11*x+12', 'y^2=20*x^6+9*x^5+8*x^4+7*x^2+14*x+16', 'y^2=17*x^6+21*x^5+11*x^4+8*x^3+10*x^2+20*x+20', 'y^2=8*x^6+12*x^5+4*x^4+17*x^2+5*x+9', 'y^2=15*x^6+3*x^5+7*x^4+4*x^3+21*x^2+14*x+6', 'y^2=7*x^6+20*x^5+18*x^4+20*x^3+21*x^2+7*x+13', 'y^2=8*x^6+12*x^5+11*x^4+19*x^3+9*x^2+11*x+12', 'y^2=18*x^6+5*x^5+11*x^4+16*x^3+11*x^2+5*x+18', 'y^2=11*x^6+9*x^5+2*x^4+4*x^3+12*x+13', 'y^2=5*x^6+17*x^5+19*x^4+3*x^3+21*x^2+20*x+10', 'y^2=4*x^6+19*x^5+9*x^4+9*x^3+11*x^2+19*x+17', 'y^2=15*x^6+18*x^5+15*x^4+2*x^3+15*x^2+18*x+15', 'y^2=11*x^6+4*x^5+17*x^4+3*x^3+10*x+22', 'y^2=7*x^6+3*x^5+3*x^4+15*x^3+6*x+19', 'y^2=19*x^6+9*x^5+3*x^4+6*x^3+6*x^2+14*x+17', 'y^2=7*x^6+10*x^5+6*x^4+7*x^3+15*x^2+8*x+21', 'y^2=12*x^6+13*x^5+8*x^3+21*x^2+2*x+20', 'y^2=12*x^6+9*x^5+21*x^4+15*x^3+3*x^2+13*x+13', 'y^2=13*x^6+6*x^5+13*x^4+19*x^3+7*x^2+5*x+15', 'y^2=19*x^6+5*x^5+14*x^4+8*x^3+16*x^2+5*x+20', 'y^2=19*x^6+5*x^5+21*x^4+11*x^3+6*x^2+16*x+3', 'y^2=14*x^6+15*x^5+2*x^3+10*x^2+8*x+19', 'y^2=16*x^6+21*x^5+18*x^4+14*x^3+22*x^2+16*x+22', 'y^2=12*x^6+2*x^5+11*x^4+11*x^3+11*x^2+2*x+12'], 'dim1_distinct': 2, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 12, 'g': 2, 'galois_groups': ['2T1', '2T1'], 'geom_dim1_distinct': 2, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1', '2T1'], 'geometric_number_fields': ['2.0.11.1', '2.0.83.1'], 'geometric_splitting_field': '4.0.833569.1', 'geometric_splitting_polynomials': [[324, 0, 47, 0, 1]], 'group_structure_count': 2, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 48, 'is_geometrically_simple': False, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': False, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 48, 'label': '2.23.ag_t', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.11.1', '2.0.83.1'], 'p': 23, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 5, 1, 6], [1, 5, 2, 6], [2, 7, 1, 18]], 'poly': [1, -6, 19, -138, 529], 'poly_str': '1 -6 19 -138 529 ', 'primitive_models': [], 'principal_polarization_count': 51, 'q': 23, 'real_poly': [1, -6, -27], 'simple_distinct': ['1.23.aj', '1.23.d'], 'simple_factors': ['1.23.ajA', '1.23.dA'], 'simple_multiplicities': [1, 1], 'singular_primes': ['3,19*F-14', '3,-V-1', '2,-F^2+7*V-36'], 'size': 222, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.833569.1', 'splitting_polynomials': [[324, 0, 47, 0, 1]], 'twist_count': 4, 'twists': [['2.23.am_cv', '2.529.c_ajd', 2], ['2.23.g_t', '2.529.c_ajd', 2], ['2.23.m_cv', '2.529.c_ajd', 2]], 'weak_equivalence_count': 12, 'zfv_index': 144, 'zfv_index_factorization': [[2, 4], [3, 2]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_pic_size': 72, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 913, 'zfv_singular_count': 6, 'zfv_singular_primes': ['3,19*F-14', '3,-V-1', '2,-F^2+7*V-36']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 14091
{'base_label': '2.23.ag_t', 'extension_degree': 1, 'extension_label': '1.23.aj', 'multiplicity': 1}
-
id: 14092
{'base_label': '2.23.ag_t', 'extension_degree': 1, 'extension_label': '1.23.d', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.11.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.23.aj', 'galois_group': '2T1', 'places': [['18', '1'], ['4', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.83.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.23.d', 'galois_group': '2T1', 'places': [['1', '1'], ['21', '1']]}