Properties

Label 2.53.c_cs
Base field $\F_{53}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{53}$
Dimension:  $2$
L-polynomial:  $1 + 2 x + 70 x^{2} + 106 x^{3} + 2809 x^{4}$
Frobenius angles:  $\pm0.386492253807$, $\pm0.661707012661$
Angle rank:  $2$ (numerical)
Number field:  4.0.41245232.1
Galois group:  $D_{4}$
Jacobians:  $228$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2988$ $8282736$ $22150142604$ $62273054866176$ $174880428700803948$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $56$ $2946$ $148784$ $7892174$ $418178656$ $22163904306$ $1174713316840$ $62259715067038$ $3299763485821928$ $174887469904032546$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 228 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{53}$.

Endomorphism algebra over $\F_{53}$
The endomorphism algebra of this simple isogeny class is 4.0.41245232.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.53.ac_cs$2$(not in LMFDB)