Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 2 x + 70 x^{2} + 106 x^{3} + 2809 x^{4}$ |
Frobenius angles: | $\pm0.386492253807$, $\pm0.661707012661$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.41245232.1 |
Galois group: | $D_{4}$ |
Jacobians: | $228$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2988$ | $8282736$ | $22150142604$ | $62273054866176$ | $174880428700803948$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $56$ | $2946$ | $148784$ | $7892174$ | $418178656$ | $22163904306$ | $1174713316840$ | $62259715067038$ | $3299763485821928$ | $174887469904032546$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 228 curves (of which all are hyperelliptic):
- $y^2=19 x^6+32 x^5+31 x^4+37 x^3+37 x^2+35 x$
- $y^2=50 x^6+21 x^5+13 x^4+7 x^3+33 x^2+x+19$
- $y^2=3 x^6+27 x^5+51 x^4+16 x^3+8 x^2+32 x+34$
- $y^2=35 x^6+22 x^5+15 x^4+8 x^3+38 x^2+39 x+30$
- $y^2=27 x^6+3 x^5+28 x^4+51 x^3+46 x^2+7 x+51$
- $y^2=52 x^6+10 x^5+25 x^4+51 x^3+49 x^2+50 x$
- $y^2=2 x^6+43 x^5+49 x^4+25 x^3+32 x^2+37 x+38$
- $y^2=17 x^6+17 x^5+34 x^3+25 x^2+43 x+23$
- $y^2=2 x^6+25 x^5+x^4+51 x^3+26 x^2+38 x+28$
- $y^2=31 x^6+42 x^5+39 x^4+33 x^3+18 x^2+43 x+1$
- $y^2=4 x^6+46 x^5+50 x^4+29 x^3+42 x^2+36 x+24$
- $y^2=13 x^6+12 x^5+43 x^4+28 x^3+42 x^2+20 x+30$
- $y^2=33 x^6+39 x^5+5 x^4+49 x^3+4 x^2+28 x+11$
- $y^2=4 x^6+44 x^5+32 x^4+6 x^2+40 x+34$
- $y^2=32 x^6+33 x^5+x^4+45 x^3+43 x^2+7 x+35$
- $y^2=44 x^6+37 x^5+38 x^4+16 x^3+5 x^2+46 x+2$
- $y^2=10 x^6+38 x^5+19 x^4+15 x^3+25 x^2+21 x+37$
- $y^2=49 x^6+27 x^5+36 x^4+8 x^3+46 x^2+5 x+29$
- $y^2=43 x^6+36 x^5+34 x^4+20 x^3+29 x^2+39 x+39$
- $y^2=20 x^6+8 x^5+19 x^4+9 x^3+32 x^2+x+41$
- and 208 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$The endomorphism algebra of this simple isogeny class is 4.0.41245232.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.53.ac_cs | $2$ | (not in LMFDB) |