Properties

Label 2.47.ag_dq
Base field $\F_{47}$
Dimension $2$
$p$-rank $1$
Ordinary no
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{47}$
Dimension:  $2$
L-polynomial:  $( 1 - 6 x + 47 x^{2} )( 1 + 47 x^{2} )$
  $1 - 6 x + 94 x^{2} - 282 x^{3} + 2209 x^{4}$
Frobenius angles:  $\pm0.355830380849$, $\pm0.5$
Angle rank:  $1$ (numerical)
Jacobians:  $180$

This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2016$ $5225472$ $10844832096$ $23794876514304$ $52593792166663776$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $42$ $2362$ $104454$ $4876318$ $229321722$ $10779233722$ $506623079382$ $23811285550846$ $1119130526924298$ $52599132610972282$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 180 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{47^{2}}$.

Endomorphism algebra over $\F_{47}$
The isogeny class factors as 1.47.ag $\times$ 1.47.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{47}$
The base change of $A$ to $\F_{47^{2}}$ is 1.2209.cg $\times$ 1.2209.dq. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.47.g_dq$2$(not in LMFDB)