Invariants
Base field: | $\F_{47}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 6 x + 47 x^{2} )( 1 + 47 x^{2} )$ |
$1 - 6 x + 94 x^{2} - 282 x^{3} + 2209 x^{4}$ | |
Frobenius angles: | $\pm0.355830380849$, $\pm0.5$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $180$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
$p$-rank: | $1$ |
Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2016$ | $5225472$ | $10844832096$ | $23794876514304$ | $52593792166663776$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $42$ | $2362$ | $104454$ | $4876318$ | $229321722$ | $10779233722$ | $506623079382$ | $23811285550846$ | $1119130526924298$ | $52599132610972282$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 180 curves (of which all are hyperelliptic):
- $y^2=37 x^6+44 x^5+3 x^4+32 x^3+44 x^2+13 x+22$
- $y^2=3 x^5+32 x^4+44 x^3+15 x^2+33 x+34$
- $y^2=32 x^6+12 x^5+42 x^4+39 x^3+10 x^2+3 x+7$
- $y^2=4 x^6+13 x^5+3 x^4+6 x^3+43 x^2+11 x+15$
- $y^2=13 x^6+4 x^5+10 x^4+46 x^3+42 x^2+38 x+26$
- $y^2=15 x^6+42 x^5+29 x^4+44 x^3+35 x^2+3 x+41$
- $y^2=8 x^6+41 x^5+40 x^4+17 x^3+40 x^2+41 x+8$
- $y^2=25 x^6+11 x^5+24 x^4+45 x^3+21 x^2+16 x+34$
- $y^2=29 x^6+4 x^5+13 x^4+4 x^3+9 x^2+4 x+41$
- $y^2=44 x^6+22 x^5+30 x^4+16 x^3+5 x^2+45 x+15$
- $y^2=43 x^6+35 x^5+18 x^4+34 x^3+18 x^2+35 x+43$
- $y^2=39 x^6+8 x^5+44 x^4+17 x^3+13 x^2+43 x+33$
- $y^2=39 x^6+11 x^5+5 x^4+8 x^3+35 x^2+22 x+29$
- $y^2=36 x^6+46 x^5+19 x^4+45 x^3+19 x^2+46 x+36$
- $y^2=45 x^6+14 x^5+16 x^4+8 x^3+3 x^2+8 x+39$
- $y^2=9 x^6+4 x^5+15 x^4+44 x^3+23 x^2+14 x+6$
- $y^2=11 x^6+28 x^5+36 x^4+28 x^3+36 x^2+28 x+11$
- $y^2=11 x^6+13 x^5+22 x^4+24 x^3+39 x^2+36 x+8$
- $y^2=9 x^6+28 x^5+30 x^4+6 x^3+22 x^2+9 x+32$
- $y^2=x^6+42 x^5+35 x^4+12 x^3+35 x^2+42 x+1$
- and 160 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47^{2}}$.
Endomorphism algebra over $\F_{47}$The isogeny class factors as 1.47.ag $\times$ 1.47.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{47^{2}}$ is 1.2209.cg $\times$ 1.2209.dq. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.47.g_dq | $2$ | (not in LMFDB) |