Invariants
Base field: | $\F_{19}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 2 x - 4 x^{2} - 38 x^{3} + 361 x^{4}$ |
Frobenius angles: | $\pm0.166110534063$, $\pm0.720023932030$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.25205568.1 |
Galois group: | $D_{4}$ |
Jacobians: | $20$ |
Isomorphism classes: | 20 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $318$ | $126564$ | $46058166$ | $17118034128$ | $6135372031638$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $18$ | $350$ | $6714$ | $131350$ | $2477838$ | $47052254$ | $893983206$ | $16983506398$ | $322687645074$ | $6131067861230$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):
- $y^2=16 x^6+14 x^5+x^4+5 x^3+3 x^2+14 x$
- $y^2=15 x^6+14 x^4+x^3+11 x^2+17$
- $y^2=18 x^6+x^5+13 x^4+9 x^3+13 x^2+5 x+5$
- $y^2=10 x^6+x^5+13 x^4+2 x^3+8 x^2+14 x+4$
- $y^2=12 x^6+17 x^5+4 x^4+11 x^3+18 x^2+4$
- $y^2=17 x^6+11 x^5+10 x^4+2 x^3+18 x^2+18 x+13$
- $y^2=18 x^6+13 x^5+5 x^4+6 x^3+8 x^2+15 x+18$
- $y^2=x^6+5 x^5+x^4+3 x^3+18 x^2+17 x+3$
- $y^2=2 x^6+16 x^5+14 x^4+4 x^3+17 x^2+7 x+2$
- $y^2=18 x^6+16 x^5+18 x^4+10 x^3+12 x^2+18 x+14$
- $y^2=8 x^6+8 x^5+15 x^4+4 x^3+15 x^2+6$
- $y^2=x^6+3 x^5+8 x^4+14 x^3+6 x^2+6 x+8$
- $y^2=16 x^6+3 x^5+13 x^4+5 x^3+14 x^2+8 x+12$
- $y^2=5 x^6+2 x^5+7 x^4+3 x^3+11 x^2+5 x+7$
- $y^2=15 x^6+15 x^5+11 x^4+8 x^2+6 x+12$
- $y^2=12 x^6+3 x^5+8 x^4+4 x^3+5 x^2+9 x+3$
- $y^2=13 x^5+13 x^3+7 x^2+2 x+15$
- $y^2=10 x^6+12 x^5+5 x^4+12 x^2+5 x+4$
- $y^2=2 x^6+5 x^5+3 x^4+9 x^3+15 x^2+14 x+3$
- $y^2=6 x^6+7 x^5+18 x^4+10 x^3+x^2+x+2$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19}$.
Endomorphism algebra over $\F_{19}$The endomorphism algebra of this simple isogeny class is 4.0.25205568.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.19.c_ae | $2$ | (not in LMFDB) |