Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 6 x + 106 x^{2} - 354 x^{3} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.335686683375$, $\pm0.532849576971$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.18380880.1 |
Galois group: | $D_{4}$ |
Jacobians: | $204$ |
Isomorphism classes: | 272 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3228$ | $12744144$ | $42310083564$ | $146793167781120$ | $511115291245199148$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $54$ | $3658$ | $206010$ | $12114286$ | $714922254$ | $42180457786$ | $2488647964626$ | $146830434507166$ | $8662996153481670$ | $511116754655806378$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 204 curves (of which all are hyperelliptic):
- $y^2=19 x^6+35 x^5+29 x^4+28 x^3+46 x^2+5 x+16$
- $y^2=20 x^6+43 x^5+44 x^4+17 x^3+31 x^2+7$
- $y^2=11 x^6+58 x^5+6 x^3+13 x^2+51 x+41$
- $y^2=8 x^6+9 x^5+13 x^4+36 x^3+51 x^2+3 x+35$
- $y^2=27 x^6+15 x^5+27 x^4+44 x^3+39 x^2+28 x+17$
- $y^2=57 x^6+28 x^5+32 x^4+56 x^3+58 x^2+39 x+42$
- $y^2=45 x^6+35 x^5+19 x^4+57 x^3+21 x^2+17 x+58$
- $y^2=x^6+5 x^5+3 x^4+26 x^3+20 x^2+10$
- $y^2=16 x^6+42 x^5+42 x^4+57 x^3+44 x^2+20 x+38$
- $y^2=56 x^6+33 x^5+10 x^4+37 x^3+7 x^2+45 x+42$
- $y^2=28 x^6+57 x^5+16 x^4+7 x^2+37 x+33$
- $y^2=9 x^6+5 x^5+9 x^4+9 x^3+55 x^2+17 x+57$
- $y^2=13 x^6+55 x^5+40 x^4+26 x^2+28 x+32$
- $y^2=24 x^6+42 x^5+32 x^4+14 x^3+42 x^2+16 x+57$
- $y^2=34 x^6+48 x^5+37 x^4+3 x^3+23 x^2+36 x+41$
- $y^2=39 x^6+46 x^5+39 x^4+22 x^3+33 x^2+12 x+48$
- $y^2=37 x^6+39 x^5+25 x^4+39 x^3+3 x^2+52 x+24$
- $y^2=43 x^6+29 x^4+13 x^3+25 x^2+31 x+11$
- $y^2=2 x^6+48 x^5+25 x^4+25 x^3+30 x^2+5 x+2$
- $y^2=2 x^6+9 x^5+16 x^4+37 x^3+31 x^2+3 x+5$
- and 184 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is 4.0.18380880.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.g_ec | $2$ | (not in LMFDB) |