-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 3228, 'abvar_counts': [3228, 12744144, 42310083564, 146793167781120, 511115291245199148, 1779194218540071298896, 6193377452363757395547228, 21559176952319706077367521280, 75047499454635563741841770805564, 261240336197236246681435626659194704], 'abvar_counts_str': '3228 12744144 42310083564 146793167781120 511115291245199148 1779194218540071298896 6193377452363757395547228 21559176952319706077367521280 75047499454635563741841770805564 261240336197236246681435626659194704 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.335686683374844, 0.532849576970998], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 54, 'curve_counts': [54, 3658, 206010, 12114286, 714922254, 42180457786, 2488647964626, 146830434507166, 8662996153481670, 511116754655806378], 'curve_counts_str': '54 3658 206010 12114286 714922254 42180457786 2488647964626 146830434507166 8662996153481670 511116754655806378 ', 'curves': ['y^2=19*x^6+35*x^5+29*x^4+28*x^3+46*x^2+5*x+16', 'y^2=20*x^6+43*x^5+44*x^4+17*x^3+31*x^2+7', 'y^2=11*x^6+58*x^5+6*x^3+13*x^2+51*x+41', 'y^2=8*x^6+9*x^5+13*x^4+36*x^3+51*x^2+3*x+35', 'y^2=27*x^6+15*x^5+27*x^4+44*x^3+39*x^2+28*x+17', 'y^2=57*x^6+28*x^5+32*x^4+56*x^3+58*x^2+39*x+42', 'y^2=45*x^6+35*x^5+19*x^4+57*x^3+21*x^2+17*x+58', 'y^2=x^6+5*x^5+3*x^4+26*x^3+20*x^2+10', 'y^2=16*x^6+42*x^5+42*x^4+57*x^3+44*x^2+20*x+38', 'y^2=56*x^6+33*x^5+10*x^4+37*x^3+7*x^2+45*x+42', 'y^2=28*x^6+57*x^5+16*x^4+7*x^2+37*x+33', 'y^2=9*x^6+5*x^5+9*x^4+9*x^3+55*x^2+17*x+57', 'y^2=13*x^6+55*x^5+40*x^4+26*x^2+28*x+32', 'y^2=24*x^6+42*x^5+32*x^4+14*x^3+42*x^2+16*x+57', 'y^2=34*x^6+48*x^5+37*x^4+3*x^3+23*x^2+36*x+41', 'y^2=39*x^6+46*x^5+39*x^4+22*x^3+33*x^2+12*x+48', 'y^2=37*x^6+39*x^5+25*x^4+39*x^3+3*x^2+52*x+24', 'y^2=43*x^6+29*x^4+13*x^3+25*x^2+31*x+11', 'y^2=2*x^6+48*x^5+25*x^4+25*x^3+30*x^2+5*x+2', 'y^2=2*x^6+9*x^5+16*x^4+37*x^3+31*x^2+3*x+5', 'y^2=13*x^6+6*x^5+11*x^4+9*x^3+58*x^2+46*x+33', 'y^2=15*x^6+38*x^5+34*x^4+51*x^3+18*x^2+18*x+49', 'y^2=43*x^6+21*x^5+29*x^4+52*x^3+44*x^2+4*x+46', 'y^2=47*x^6+40*x^5+50*x^4+34*x^3+39*x^2+22*x+51', 'y^2=49*x^6+10*x^5+x^4+24*x^3+21*x^2+40*x+8', 'y^2=8*x^6+26*x^5+9*x^4+5*x^3+42*x^2+39*x+39', 'y^2=13*x^6+13*x^5+50*x^4+x^3+52*x^2+56*x+7', 'y^2=2*x^6+41*x^5+11*x^4+13*x^3+35*x^2+6*x+22', 'y^2=23*x^6+35*x^5+45*x^4+7*x^3+49*x^2+49*x+17', 'y^2=44*x^6+5*x^5+57*x^4+3*x^3+56*x^2+47', 'y^2=53*x^6+36*x^5+37*x^4+11*x^3+43*x^2+27*x+10', 'y^2=53*x^6+27*x^5+8*x^4+36*x^3+17*x+13', 'y^2=21*x^6+12*x^5+34*x^4+48*x^3+43*x^2+2*x+57', 'y^2=52*x^6+18*x^5+57*x^4+27*x^3+12*x^2+26*x+11', 'y^2=17*x^6+41*x^5+51*x^4+39*x^3+42*x^2+35*x+21', 'y^2=35*x^6+55*x^5+32*x^4+7*x^3+31*x^2+52*x+15', 'y^2=3*x^6+24*x^5+24*x^4+24*x^3+4*x^2+37*x+25', 'y^2=23*x^6+52*x^5+8*x^4+22*x^3+50*x^2+52*x+43', 'y^2=26*x^6+21*x^5+44*x^4+53*x^3+16*x^2+49*x+8', 'y^2=40*x^6+38*x^5+52*x^4+57*x^3+30*x+26', 'y^2=26*x^6+49*x^5+28*x^4+8*x^3+7*x^2+18*x+13', 'y^2=44*x^6+16*x^5+24*x^4+24*x^3+46*x^2+47*x+32', 'y^2=53*x^6+11*x^5+31*x^4+2*x^3+47*x^2+8*x+5', 'y^2=56*x^6+5*x^5+12*x^4+15*x^3+47*x^2+46*x+12', 'y^2=11*x^6+49*x^5+25*x^4+45*x^3+19*x^2+52*x+2', 'y^2=43*x^6+24*x^5+47*x^4+42*x^3+51*x^2+18*x+52', 'y^2=48*x^6+27*x^5+50*x^4+44*x^3+26*x^2+8*x+6', 'y^2=44*x^6+24*x^5+18*x^4+19*x^3+50*x^2+27*x+11', 'y^2=50*x^6+49*x^5+56*x^4+36*x^3+26*x^2+29*x+28', 'y^2=48*x^6+46*x^5+11*x^4+49*x^3+24*x^2+7*x+11', 'y^2=22*x^6+46*x^5+9*x^4+48*x^3+50*x^2+18*x+9', 'y^2=56*x^6+56*x^5+8*x^4+3*x^3+7*x^2+35*x', 'y^2=25*x^6+46*x^5+14*x^4+58*x^3+38*x^2+24*x+23', 'y^2=49*x^6+35*x^5+47*x^4+55*x^3+57*x^2+11*x+17', 'y^2=14*x^6+x^5+20*x^4+44*x^3+57*x^2+27*x+27', 'y^2=30*x^6+4*x^5+38*x^4+28*x^3+49*x^2+43*x+50', 'y^2=49*x^6+52*x^5+9*x^4+51*x^3+17*x^2+55*x+55', 'y^2=50*x^6+9*x^5+54*x^4+46*x^3+57*x^2+14*x+45', 'y^2=22*x^6+45*x^5+5*x^4+13*x^3+40*x^2+9*x+38', 'y^2=21*x^6+11*x^5+20*x^4+55*x^3+35*x^2+55*x+33', 'y^2=11*x^6+21*x^5+3*x^4+45*x^3+45*x^2+23*x+49', 'y^2=23*x^6+13*x^5+12*x^4+4*x^3+14*x^2+47*x+34', 'y^2=53*x^6+40*x^5+21*x^4+18*x^3+47*x^2+8*x+12', 'y^2=29*x^6+55*x^5+47*x^4+20*x^3+30*x^2+38*x+29', 'y^2=35*x^6+51*x^5+29*x^4+22*x^3+35*x^2+28*x+36', 'y^2=10*x^6+49*x^5+25*x^4+26*x^3+3*x^2+33*x+20', 'y^2=44*x^6+54*x^5+9*x^4+54*x^3+7*x^2+17*x+1', 'y^2=50*x^6+8*x^5+35*x^4+13*x^3+34*x^2+25*x+19', 'y^2=16*x^6+34*x^5+x^4+31*x^3+43*x^2+38*x+45', 'y^2=13*x^6+44*x^5+34*x^4+2*x^3+44*x^2+33*x+20', 'y^2=51*x^6+36*x^5+32*x^4+14*x^3+24*x^2+10*x+57', 'y^2=7*x^6+16*x^5+35*x^3+8*x^2+12*x', 'y^2=57*x^6+46*x^5+24*x^4+55*x^3+48*x^2+5*x+19', 'y^2=17*x^6+52*x^4+28*x^3+33*x^2+31*x+58', 'y^2=31*x^6+21*x^5+42*x^4+49*x^3+14*x^2+54*x+31', 'y^2=32*x^6+20*x^5+9*x^4+30*x^3+41*x^2+17*x+5', 'y^2=4*x^6+4*x^5+42*x^4+29*x^3+43*x^2+4*x+15', 'y^2=22*x^6+x^5+42*x^4+42*x^3+55*x^2+38*x+56', 'y^2=11*x^6+15*x^5+51*x^4+37*x^3+x^2+54*x+22', 'y^2=17*x^6+40*x^5+32*x^4+5*x^3+41*x^2+55*x+36', 'y^2=7*x^6+58*x^5+34*x^4+35*x^3+5*x^2+56*x+11', 'y^2=7*x^6+8*x^5+38*x^4+13*x^3+42*x^2+27*x+3', 'y^2=39*x^6+11*x^5+3*x^4+13*x^3+18*x^2+50*x+47', 'y^2=41*x^6+26*x^5+45*x^4+9*x^3+27*x^2+21*x+31', 'y^2=50*x^6+7*x^5+25*x^4+23*x^3+8*x^2+51*x+52', 'y^2=17*x^6+12*x^5+43*x^4+31*x^3+21*x^2+3*x+44', 'y^2=56*x^6+14*x^5+44*x^4+53*x^3+15*x^2+48*x+41', 'y^2=31*x^6+36*x^5+24*x^3+54*x^2+33*x+50', 'y^2=49*x^6+50*x^5+37*x^4+43*x^3+45*x^2+21*x+58', 'y^2=33*x^6+33*x^5+8*x^4+2*x^3+x^2+48*x+31', 'y^2=10*x^6+9*x^5+19*x^4+52*x^3+52*x^2+47*x+55', 'y^2=9*x^6+40*x^5+56*x^4+33*x^3+58*x^2+53*x+14', 'y^2=55*x^6+32*x^5+53*x^4+45*x^3+24*x^2+9*x+8', 'y^2=55*x^6+15*x^5+44*x^4+9*x^3+28*x^2+47*x+48', 'y^2=53*x^6+55*x^5+17*x^4+57*x^3+54*x^2+21*x+32', 'y^2=47*x^6+43*x^5+54*x^4+26*x^3+x^2+9*x+27', 'y^2=49*x^6+34*x^5+8*x^4+27*x^3+8*x^2+23*x+11', 'y^2=3*x^6+9*x^5+41*x^4+10*x^3+38*x^2+57*x+2', 'y^2=2*x^6+5*x^5+40*x^4+36*x^3+44*x^2+47*x+17', 'y^2=8*x^6+38*x^5+54*x^4+43*x^3+45*x^2+10*x+39', 'y^2=33*x^6+12*x^5+51*x^4+23*x^3+46*x^2+9*x+53', 'y^2=51*x^6+40*x^5+14*x^4+14*x^3+33*x^2+55*x+41', 'y^2=49*x^6+43*x^5+49*x^4+2*x^3+19*x^2+50*x+18', 'y^2=3*x^6+27*x^5+50*x^4+52*x^3+31*x^2+24*x+51', 'y^2=53*x^6+10*x^5+43*x^4+27*x^3+39*x^2+24*x+39', 'y^2=33*x^6+29*x^5+22*x^4+28*x^3+x^2+50*x+51', 'y^2=17*x^6+14*x^5+14*x^4+24*x^3+18*x^2+58*x+23', 'y^2=15*x^6+10*x^5+24*x^4+14*x^3+43*x^2+7*x+24', 'y^2=38*x^6+44*x^5+58*x^4+52*x^3+31*x^2+11*x+23', 'y^2=42*x^6+32*x^5+42*x^4+17*x^3+36*x+37', 'y^2=12*x^6+53*x^5+17*x^4+4*x^3+51*x^2+55*x+6', 'y^2=20*x^6+47*x^5+25*x^4+32*x^3+54*x^2+20*x+5', 'y^2=58*x^6+40*x^5+55*x^4+57*x^3+7*x^2+11*x+34', 'y^2=45*x^6+33*x^5+37*x^4+36*x^3+4*x^2+53*x+27', 'y^2=49*x^6+50*x^5+57*x^4+34*x^3+39*x', 'y^2=53*x^6+54*x^5+4*x^4+21*x^3+28*x^2+54*x+8', 'y^2=38*x^6+31*x^5+54*x^4+28*x^3+22*x^2+15', 'y^2=58*x^6+14*x^5+4*x^4+16*x^3+4*x^2+41*x+6', 'y^2=10*x^6+34*x^5+43*x^4+11*x^3+x^2+19*x+58', 'y^2=23*x^6+17*x^5+35*x^4+23*x^3+39*x^2+42*x+9', 'y^2=37*x^6+6*x^5+26*x^4+7*x^3+20*x^2+26*x+6', 'y^2=25*x^6+48*x^5+16*x^4+13*x^3+17*x^2+40*x+46', 'y^2=7*x^6+37*x^5+41*x^4+16*x^3+44*x^2+4*x+55', 'y^2=55*x^6+7*x^5+21*x^4+30*x^3+41*x^2+37*x+40', 'y^2=5*x^6+26*x^5+48*x^4+27*x^3+7*x^2+24*x+41', 'y^2=34*x^6+36*x^5+40*x^4+45*x^3+11*x^2+48*x+8', 'y^2=5*x^6+37*x^4+34*x^3+15*x^2+56*x', 'y^2=33*x^6+13*x^5+21*x^4+27*x^3+6*x^2+35*x+51', 'y^2=10*x^6+15*x^5+53*x^4+36*x^3+42*x^2+39*x+41', 'y^2=8*x^6+24*x^5+13*x^4+5*x^3+39*x^2+34*x+51', 'y^2=49*x^6+58*x^5+31*x^4+55*x^3+53*x^2+39*x+58', 'y^2=32*x^6+58*x^5+34*x^4+29*x^3+44*x+38', 'y^2=46*x^6+56*x^5+9*x^4+58*x^3+55*x^2+25*x+57', 'y^2=9*x^6+18*x^5+39*x^4+36*x^3+4*x^2+40*x+8', 'y^2=23*x^6+19*x^5+37*x^4+51*x^3+14*x^2+57*x+5', 'y^2=26*x^6+41*x^5+5*x^4+54*x^3+54*x^2+41*x+42', 'y^2=8*x^6+18*x^5+23*x^4+42*x^3+38*x^2+18*x+55', 'y^2=38*x^6+28*x^5+53*x^4+36*x^3+35*x^2+x+17', 'y^2=2*x^6+2*x^5+18*x^4+43*x^3+40*x^2+16*x+6', 'y^2=14*x^6+34*x^5+12*x^4+3*x^3+6*x^2+23*x+22', 'y^2=31*x^6+15*x^5+24*x^4+15*x^3+44*x^2+34*x+24', 'y^2=27*x^6+x^5+11*x^4+20*x^3+27*x^2+55*x+2', 'y^2=27*x^6+22*x^5+14*x^4+27*x^3+18*x^2+4*x+10', 'y^2=30*x^5+24*x^4+19*x^3+20*x^2+32*x+55', 'y^2=50*x^6+45*x^5+43*x^4+16*x^3+41*x^2+42*x+6', 'y^2=58*x^6+40*x^5+18*x^4+26*x^3+3*x^2+6*x+37', 'y^2=9*x^6+36*x^5+28*x^4+33*x^3+52*x^2+30*x+39', 'y^2=20*x^6+34*x^5+5*x^4+4*x^3+x^2+56*x+3', 'y^2=20*x^6+27*x^5+49*x^4+55*x^3+16*x^2+41*x+17', 'y^2=26*x^6+47*x^5+23*x^4+13*x^3+24*x^2+35*x+1', 'y^2=17*x^6+24*x^5+7*x^4+21*x^3+18*x^2+22*x+11', 'y^2=34*x^6+10*x^5+22*x^4+23*x^3+11*x^2+12*x+34', 'y^2=2*x^6+29*x^5+7*x^4+18*x^3+33*x^2+47*x+15', 'y^2=50*x^6+37*x^5+39*x^4+29*x^3+25*x^2+22*x+16', 'y^2=58*x^6+4*x^5+10*x^4+6*x^3+24*x^2+45*x+44', 'y^2=8*x^6+54*x^5+54*x^4+23*x^3+21*x^2+28*x+41', 'y^2=24*x^6+2*x^5+4*x^4+20*x^3+49*x^2+29*x+14', 'y^2=6*x^6+40*x^5+17*x^4+19*x^3+49*x^2+13*x+47', 'y^2=10*x^6+52*x^5+13*x^4+42*x^3+51*x^2+20*x+52', 'y^2=53*x^6+25*x^5+13*x^4+29*x^3+35*x^2+33*x+52', 'y^2=17*x^6+8*x^5+12*x^4+21*x^3+13*x^2+16*x+8', 'y^2=28*x^6+31*x^5+11*x^4+40*x^3+7*x^2+11*x+45', 'y^2=35*x^6+47*x^5+29*x^4+46*x^3+14*x^2+45*x+34', 'y^2=3*x^6+30*x^5+46*x^4+56*x^3+27*x^2+58*x+6', 'y^2=46*x^6+40*x^5+51*x^4+57*x^3+54*x^2+21*x+54', 'y^2=28*x^6+17*x^5+9*x^4+4*x^3+43*x^2+56*x+36', 'y^2=14*x^6+50*x^5+12*x^4+2*x^3+3*x^2+7*x+49', 'y^2=17*x^6+2*x^5+x^4+18*x^3+16*x^2+44*x+39', 'y^2=45*x^6+22*x^5+11*x^4+6*x^3+x^2+46*x+13', 'y^2=51*x^6+52*x^5+52*x^4+44*x^3+14*x^2+14*x+53', 'y^2=48*x^6+37*x^5+6*x^4+46*x^3+28*x^2+51*x+17', 'y^2=33*x^6+30*x^5+27*x^4+18*x^3+34*x^2+14*x+23', 'y^2=44*x^6+27*x^5+33*x^4+38*x^3+35*x^2+27*x+50', 'y^2=30*x^6+4*x^5+26*x^4+57*x^3+20*x^2+33*x+4', 'y^2=48*x^6+6*x^5+33*x^4+28*x^3+44*x^2+46*x+56', 'y^2=31*x^6+26*x^5+3*x^4+34*x^3+3*x^2+10*x+58', 'y^2=26*x^6+52*x^5+18*x^4+31*x^3+20*x^2+30*x+10', 'y^2=27*x^6+24*x^5+57*x^4+7*x^3+12*x^2+7*x+31', 'y^2=43*x^6+30*x^5+31*x^4+10*x^3+10*x^2+3*x+9', 'y^2=21*x^6+10*x^5+37*x^4+7*x^3+36*x^2+19*x+11', 'y^2=39*x^6+28*x^5+11*x^4+42*x^2+15*x+58', 'y^2=9*x^6+39*x^5+32*x^4+24*x^3+32*x^2+18*x+35', 'y^2=19*x^6+3*x^5+14*x^4+49*x^3+21*x^2+51*x+55', 'y^2=26*x^6+57*x^5+47*x^4+15*x^2+14*x+1', 'y^2=51*x^6+52*x^5+41*x^4+7*x^3+58*x^2+17*x+23', 'y^2=32*x^6+x^5+16*x^4+11*x^3+48*x^2+36*x+26', 'y^2=29*x^6+13*x^5+48*x^4+46*x^3+15*x^2+55*x+17', 'y^2=46*x^6+51*x^5+51*x^4+37*x^3+53*x^2+15*x+17', 'y^2=8*x^6+53*x^5+46*x^4+30*x^3+15*x^2+3*x+58', 'y^2=3*x^6+55*x^5+31*x^4+57*x^3+40*x+16', 'y^2=52*x^6+48*x^5+41*x^4+11*x^3+39*x^2+52*x+5', 'y^2=6*x^6+11*x^5+15*x^4+56*x^3+28*x^2+19*x+16', 'y^2=41*x^6+21*x^5+47*x^4+26*x^3+23*x^2+29*x+9', 'y^2=21*x^6+12*x^5+9*x^4+5*x^3+6*x^2+27*x+1', 'y^2=25*x^6+7*x^5+45*x^4+6*x^3+48*x^2+41*x+56', 'y^2=6*x^6+47*x^5+40*x^4+42*x^3+28*x^2+2*x+24', 'y^2=13*x^6+8*x^5+46*x^4+20*x^3+4*x^2+28*x+31', 'y^2=40*x^6+47*x^5+8*x^4+13*x^3+43*x^2+49*x+28', 'y^2=27*x^6+16*x^5+27*x^4+47*x^3+55*x^2+x+52', 'y^2=47*x^6+17*x^5+37*x^4+36*x^3+27*x^2+26*x', 'y^2=47*x^6+24*x^5+53*x^4+45*x^3+41*x^2+35*x+9', 'y^2=27*x^6+11*x^5+40*x^4+23*x^3+41*x^2+10*x+50', 'y^2=40*x^6+28*x^5+32*x^4+16*x^3+39*x^2+x+37', 'y^2=29*x^6+5*x^5+4*x^4+20*x^3+8*x^2+19*x+40'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 3, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.18380880.1'], 'geometric_splitting_field': '4.0.18380880.1', 'geometric_splitting_polynomials': [[2605, 0, 103, 0, 1]], 'group_structure_count': 2, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 204, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 204, 'label': '2.59.ag_ec', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.18380880.1'], 'p': 59, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 3, 1, 68], [1, 5, 1, 2]], 'poly': [1, -6, 106, -354, 3481], 'poly_str': '1 -6 106 -354 3481 ', 'primitive_models': [], 'principal_polarization_count': 204, 'q': 59, 'real_poly': [1, -6, -12], 'simple_distinct': ['2.59.ag_ec'], 'simple_factors': ['2.59.ag_ecA'], 'simple_multiplicities': [1], 'singular_primes': ['2,5*F+2*V-11'], 'size': 272, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.18380880.1', 'splitting_polynomials': [[2605, 0, 103, 0, 1]], 'twist_count': 2, 'twists': [['2.59.g_ec', '2.3481.gu_uqo', 2]], 'weak_equivalence_count': 3, 'zfv_index': 4, 'zfv_index_factorization': [[2, 2]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_pic_size': 136, 'zfv_plus_index': 2, 'zfv_plus_index_factorization': [[2, 1]], 'zfv_plus_norm': 41680, 'zfv_singular_count': 2, 'zfv_singular_primes': ['2,5*F+2*V-11']}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.59.ag_ec', 'extension_degree': 1, 'extension_label': '2.59.ag_ec', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '4.0.18380880.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.59.ag_ec', 'galois_group': '4T3', 'places': [['12', '1', '0', '0'], ['44', '1', '0', '0'], ['47', '1', '0', '0'], ['15', '1', '0', '0']]}