Properties

Label 2.79.ao_fz
Base field $\F_{79}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{79}$
Dimension:  $2$
L-polynomial:  $1 - 14 x + 155 x^{2} - 1106 x^{3} + 6241 x^{4}$
Frobenius angles:  $\pm0.205131271128$, $\pm0.503780160812$
Angle rank:  $2$ (numerical)
Number field:  4.0.6089577.1
Galois group:  $D_{4}$
Jacobians:  $144$
Isomorphism classes:  144

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $5277$ $39667209$ $243309298608$ $1517034050013897$ $9468636615899167197$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $66$ $6356$ $493488$ $38948164$ $3077173566$ $243089177150$ $19203910010946$ $1517108698957060$ $119851595443371024$ $9468276082663290836$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 144 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{79}$.

Endomorphism algebra over $\F_{79}$
The endomorphism algebra of this simple isogeny class is 4.0.6089577.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.79.o_fz$2$(not in LMFDB)