Invariants
Base field: | $\F_{79}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 14 x + 155 x^{2} - 1106 x^{3} + 6241 x^{4}$ |
Frobenius angles: | $\pm0.205131271128$, $\pm0.503780160812$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.6089577.1 |
Galois group: | $D_{4}$ |
Jacobians: | $144$ |
Isomorphism classes: | 144 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5277$ | $39667209$ | $243309298608$ | $1517034050013897$ | $9468636615899167197$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $66$ | $6356$ | $493488$ | $38948164$ | $3077173566$ | $243089177150$ | $19203910010946$ | $1517108698957060$ | $119851595443371024$ | $9468276082663290836$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 144 curves (of which all are hyperelliptic):
- $y^2=17 x^6+61 x^5+62 x^4+65 x^3+38 x^2+69 x+6$
- $y^2=19 x^6+3 x^5+33 x^4+28 x^3+41 x^2+49 x+32$
- $y^2=54 x^6+51 x^5+31 x^4+49 x^3+65 x^2+10 x+63$
- $y^2=47 x^6+15 x^5+37 x^4+36 x^3+2 x^2+56 x+39$
- $y^2=55 x^6+51 x^5+41 x^4+35 x^3+35 x^2+43 x+59$
- $y^2=33 x^6+38 x^5+75 x^4+9 x^3+78 x^2+68 x+56$
- $y^2=62 x^6+26 x^5+77 x^4+57 x^3+34 x^2+59 x+44$
- $y^2=18 x^6+67 x^5+77 x^4+62 x^3+43 x^2+35 x+41$
- $y^2=43 x^6+74 x^5+77 x^4+7 x^3+39 x^2+33 x+38$
- $y^2=44 x^6+38 x^5+53 x^4+44 x^3+33 x^2+26 x+14$
- $y^2=68 x^6+8 x^5+27 x^4+18 x^3+26 x^2+59 x+58$
- $y^2=2 x^6+25 x^5+49 x^4+68 x^3+15 x^2+60 x+30$
- $y^2=71 x^6+69 x^5+63 x^4+35 x^3+11 x^2+37 x+31$
- $y^2=10 x^6+11 x^5+49 x^4+16 x^3+67 x^2+23 x+56$
- $y^2=74 x^6+58 x^4+72 x^3+13 x^2+66 x+19$
- $y^2=74 x^6+12 x^5+24 x^4+58 x^3+53 x^2+58 x+78$
- $y^2=73 x^6+52 x^5+69 x^4+49 x^3+54 x^2+74 x+71$
- $y^2=39 x^6+14 x^5+75 x^4+75 x^3+53 x^2+57 x+44$
- $y^2=x^6+76 x^5+34 x^4+75 x^3+11 x^2+17 x+30$
- $y^2=73 x^6+13 x^5+76 x^4+25 x^3+52 x^2+41 x+15$
- and 124 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$The endomorphism algebra of this simple isogeny class is 4.0.6089577.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.79.o_fz | $2$ | (not in LMFDB) |