# Stored data for abelian variety isogeny class 2.79.ao_fz, downloaded from the LMFDB on 03 September 2025. {"abvar_count": 5277, "abvar_counts": [5277, 39667209, 243309298608, 1517034050013897, 9468636615899167197, 59091929539056134002944, 368790140028612597952490301, 2301618972773640525267207855753, 14364404994951122721781954226696496, 89648251977188653814970812250995251209], "abvar_counts_str": "5277 39667209 243309298608 1517034050013897 9468636615899167197 59091929539056134002944 368790140028612597952490301 2301618972773640525267207855753 14364404994951122721781954226696496 89648251977188653814970812250995251209 ", "all_polarized_product": false, "all_unpolarized_product": false, "angle_corank": 0, "angle_rank": 2, "angles": [0.205131271127987, 0.503780160812454], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 66, "curve_counts": [66, 6356, 493488, 38948164, 3077173566, 243089177150, 19203910010946, 1517108698957060, 119851595443371024, 9468276082663290836], "curve_counts_str": "66 6356 493488 38948164 3077173566 243089177150 19203910010946 1517108698957060 119851595443371024 9468276082663290836 ", "curves": ["y^2=17*x^6+61*x^5+62*x^4+65*x^3+38*x^2+69*x+6", "y^2=19*x^6+3*x^5+33*x^4+28*x^3+41*x^2+49*x+32", "y^2=54*x^6+51*x^5+31*x^4+49*x^3+65*x^2+10*x+63", "y^2=47*x^6+15*x^5+37*x^4+36*x^3+2*x^2+56*x+39", "y^2=55*x^6+51*x^5+41*x^4+35*x^3+35*x^2+43*x+59", "y^2=33*x^6+38*x^5+75*x^4+9*x^3+78*x^2+68*x+56", "y^2=62*x^6+26*x^5+77*x^4+57*x^3+34*x^2+59*x+44", "y^2=18*x^6+67*x^5+77*x^4+62*x^3+43*x^2+35*x+41", "y^2=43*x^6+74*x^5+77*x^4+7*x^3+39*x^2+33*x+38", "y^2=44*x^6+38*x^5+53*x^4+44*x^3+33*x^2+26*x+14", "y^2=68*x^6+8*x^5+27*x^4+18*x^3+26*x^2+59*x+58", "y^2=2*x^6+25*x^5+49*x^4+68*x^3+15*x^2+60*x+30", "y^2=71*x^6+69*x^5+63*x^4+35*x^3+11*x^2+37*x+31", "y^2=10*x^6+11*x^5+49*x^4+16*x^3+67*x^2+23*x+56", "y^2=74*x^6+58*x^4+72*x^3+13*x^2+66*x+19", "y^2=74*x^6+12*x^5+24*x^4+58*x^3+53*x^2+58*x+78", "y^2=73*x^6+52*x^5+69*x^4+49*x^3+54*x^2+74*x+71", "y^2=39*x^6+14*x^5+75*x^4+75*x^3+53*x^2+57*x+44", "y^2=x^6+76*x^5+34*x^4+75*x^3+11*x^2+17*x+30", "y^2=73*x^6+13*x^5+76*x^4+25*x^3+52*x^2+41*x+15", "y^2=74*x^6+11*x^5+60*x^4+72*x^3+56*x^2+38*x+40", "y^2=53*x^6+4*x^5+17*x^4+4*x^3+58*x^2+77*x+13", "y^2=36*x^6+5*x^5+26*x^4+26*x^3+35*x^2+29*x+43", "y^2=67*x^6+46*x^5+70*x^4+46*x^3+3*x^2+5*x+34", "y^2=11*x^6+29*x^5+30*x^4+74*x^3+39*x^2+46*x+59", "y^2=34*x^6+7*x^5+52*x^4+57*x^3+64*x^2+8*x+29", "y^2=51*x^6+43*x^5+3*x^4+63*x^3+4*x^2+71*x+76", "y^2=64*x^6+55*x^5+3*x^4+38*x^3+71*x^2+54", "y^2=54*x^6+20*x^5+50*x^4+72*x^3+67*x^2+75*x+69", "y^2=51*x^6+78*x^5+63*x^4+69*x^3+72*x^2+76*x+39", "y^2=45*x^6+48*x^5+36*x^4+53*x^3+14*x^2+13*x+72", "y^2=43*x^6+48*x^5+78*x^4+36*x^3+42*x^2+74*x+58", "y^2=13*x^6+68*x^5+53*x^4+32*x^3+47*x^2+63*x+45", "y^2=73*x^6+63*x^5+19*x^4+19*x^3+65*x^2+52*x+36", "y^2=39*x^6+67*x^5+59*x^4+28*x^3+28*x^2+36*x+17", "y^2=78*x^6+57*x^5+27*x^4+38*x^3+69*x^2+75*x+53", "y^2=75*x^6+16*x^5+65*x^4+10*x^3+71*x^2+8*x+77", "y^2=67*x^6+18*x^5+17*x^4+36*x^3+47*x^2+65*x+23", "y^2=54*x^6+36*x^5+53*x^4+38*x^3+23*x^2+70*x+20", "y^2=9*x^6+71*x^5+24*x^4+57*x^3+57*x^2+44*x+4", "y^2=12*x^6+16*x^5+57*x^4+8*x^3+13*x^2+x+75", "y^2=58*x^6+13*x^5+73*x^4+9*x^3+9*x^2+2*x+74", "y^2=21*x^6+x^5+75*x^4+68*x^3+x^2+68*x+62", "y^2=71*x^6+78*x^5+31*x^4+13*x^3+22*x^2+59*x+22", "y^2=33*x^6+26*x^5+16*x^4+50*x^3+61*x^2+2*x+72", "y^2=72*x^6+37*x^5+12*x^4+3*x^3+57*x^2+26*x+47", "y^2=28*x^6+34*x^5+15*x^4+64*x^3+28*x^2+13*x+18", "y^2=34*x^6+37*x^5+39*x^4+12*x^3+38*x^2+34*x+59", "y^2=62*x^6+26*x^5+74*x^4+56*x^3+47*x^2+43*x+26", "y^2=48*x^6+67*x^5+75*x^3+45*x^2+49*x+59", "y^2=12*x^6+58*x^5+44*x^4+38*x^3+45*x^2+33*x+11", "y^2=58*x^6+37*x^4+4*x^3+58*x^2+6*x+78", "y^2=26*x^6+19*x^5+47*x^4+72*x^3+73*x^2+34*x+53", "y^2=59*x^6+15*x^5+59*x^4+57*x^3+72*x^2+9*x+74", "y^2=67*x^6+19*x^5+25*x^4+20*x^3+6*x^2+20*x+15", "y^2=69*x^6+48*x^5+55*x^4+73*x^3+58*x^2+50*x+58", "y^2=55*x^6+16*x^5+17*x^4+20*x^3+10*x^2+8*x+48", "y^2=12*x^6+49*x^5+8*x^4+47*x^3+47*x^2+58*x+27", "y^2=26*x^6+48*x^5+15*x^4+73*x^3+16*x^2+4*x+1", "y^2=13*x^6+31*x^5+28*x^4+37*x^3+4*x^2+47*x+78", "y^2=46*x^6+67*x^5+58*x^4+25*x^3+38*x^2+49*x+15", "y^2=17*x^6+46*x^5+77*x^4+63*x^3+57*x^2+62*x+15", "y^2=36*x^6+48*x^5+43*x^4+66*x^3+44*x^2+51*x+34", "y^2=30*x^6+56*x^5+24*x^4+53*x^3+60*x^2+53*x+9", "y^2=77*x^6+67*x^5+56*x^4+53*x^3+51*x^2+x+23", "y^2=59*x^6+43*x^5+62*x^4+37*x^3+48*x^2+60*x+12", "y^2=34*x^6+42*x^5+46*x^4+24*x^3+5*x^2+64*x+28", "y^2=15*x^6+65*x^5+72*x^4+23*x^3+56*x^2+7*x+27", "y^2=56*x^6+19*x^5+66*x^4+21*x^3+20*x^2+58*x+72", "y^2=60*x^6+72*x^4+36*x^3+49*x^2+68*x+66", "y^2=50*x^6+64*x^5+74*x^4+25*x^3+58*x^2+78*x+61", "y^2=28*x^6+7*x^5+50*x^4+60*x^3+17*x^2+21*x+66", "y^2=41*x^6+64*x^5+41*x^4+55*x^3+65*x^2+48*x+72", "y^2=40*x^6+3*x^5+2*x^4+78*x^3+32*x^2+9*x+3", "y^2=50*x^6+30*x^5+7*x^4+77*x^3+71*x^2+29*x+74", "y^2=42*x^6+34*x^5+36*x^4+18*x^3+42*x^2+16*x+68", "y^2=59*x^6+35*x^4+75*x^3+70*x^2+67*x+50", "y^2=21*x^6+50*x^5+34*x^4+75*x^3+40*x^2+x+47", "y^2=17*x^6+53*x^4+6*x^3+57*x^2+46*x+63", "y^2=5*x^6+12*x^5+72*x^4+53*x^3+32*x^2+26*x+74", "y^2=33*x^6+14*x^5+71*x^4+71*x^3+14*x^2+62*x+15", "y^2=36*x^6+62*x^5+5*x^4+34*x^3+48*x^2+20*x+10", "y^2=47*x^6+49*x^5+29*x^4+13*x^3+56*x^2+46*x+20", "y^2=41*x^6+53*x^5+70*x^4+55*x^3+4*x^2+12*x+27", "y^2=39*x^6+4*x^5+13*x^4+34*x^3+58*x^2+35*x+52", "y^2=67*x^6+60*x^5+48*x^4+34*x^3+70*x^2+13*x+47", "y^2=3*x^6+74*x^5+18*x^4+7*x^3+67*x^2+40*x+15", "y^2=22*x^6+62*x^5+52*x^4+14*x^3+33*x^2+42*x+48", "y^2=33*x^6+23*x^5+57*x^4+42*x^3+78*x^2+30*x+1", "y^2=9*x^6+65*x^5+28*x^4+43*x^3+67*x^2+15*x+61", "y^2=50*x^6+46*x^5+13*x^4+28*x^3+74*x^2+8*x+69", "y^2=20*x^6+25*x^5+77*x^4+23*x^3+31*x^2+73*x+61", "y^2=4*x^6+60*x^5+28*x^4+7*x^3+x^2+12*x+63", "y^2=47*x^6+20*x^5+9*x^4+50*x^3+70*x^2+64*x+9", "y^2=4*x^6+44*x^5+33*x^4+65*x^3+76*x^2+44*x+23", "y^2=72*x^6+4*x^5+18*x^4+34*x^3+49*x^2+40*x+16", "y^2=60*x^6+39*x^5+20*x^4+10*x^3+14*x^2+38*x+48", "y^2=65*x^6+77*x^5+49*x^4+31*x^3+33*x^2+36*x+70", "y^2=22*x^6+12*x^5+14*x^4+42*x^3+18*x^2+46*x+24", "y^2=37*x^6+30*x^5+32*x^4+38*x^3+35*x^2+73*x+68", "y^2=29*x^6+21*x^5+12*x^4+78*x^3+18*x^2+69*x+69", "y^2=54*x^6+29*x^5+38*x^4+75*x^3+9*x^2+52*x+37", "y^2=60*x^6+42*x^5+10*x^4+71*x^3+62*x^2+23*x+52", "y^2=73*x^6+23*x^5+68*x^4+33*x^3+44*x^2+39*x+13", "y^2=14*x^6+23*x^5+14*x^4+25*x^3+31*x^2+67*x+14", "y^2=43*x^6+45*x^5+17*x^4+42*x^3+59*x^2+31*x+7", "y^2=62*x^6+19*x^5+15*x^4+54*x^3+65*x^2+25*x+75", "y^2=35*x^6+48*x^5+41*x^4+39*x^3+32*x^2+35*x+20", "y^2=62*x^6+61*x^5+19*x^4+70*x^3+63*x^2+24*x+3", "y^2=3*x^6+72*x^5+7*x^4+73*x^3+37*x^2+58*x+25", "y^2=36*x^6+62*x^5+3*x^4+65*x^3+44*x^2+40*x+70", "y^2=6*x^6+43*x^5+74*x^4+76*x^3+30*x^2+53*x+77", "y^2=73*x^6+29*x^5+37*x^4+20*x^3+49*x^2+35*x+6", "y^2=66*x^6+51*x^5+54*x^4+72*x^3+9*x^2+40*x+17", "y^2=6*x^6+45*x^5+28*x^4+68*x^3+60*x^2+68*x+6", "y^2=53*x^6+65*x^5+62*x^4+38*x^2+66*x+7", "y^2=20*x^6+30*x^5+43*x^4+35*x^3+75*x^2+16*x+45", "y^2=77*x^6+61*x^5+23*x^4+65*x^3+5*x^2+63*x+4", "y^2=19*x^6+66*x^5+39*x^4+61*x^3+4*x^2+10*x+56", "y^2=15*x^6+6*x^5+58*x^4+75*x^3+8*x^2+14*x+22", "y^2=44*x^6+66*x^5+61*x^4+59*x^3+41*x^2+72*x+13", "y^2=67*x^6+33*x^5+32*x^4+64*x^3+5*x^2+3*x+69", "y^2=68*x^6+35*x^5+57*x^4+72*x^3+11*x^2+67*x+33", "y^2=5*x^6+40*x^5+42*x^4+14*x^3+7*x^2+75*x+74", "y^2=2*x^6+62*x^5+60*x^4+66*x^3+48*x^2+76*x+74", "y^2=37*x^6+21*x^5+41*x^4+50*x^2+66*x+77", "y^2=56*x^6+17*x^5+73*x^4+10*x^3+62*x^2+53*x+49", "y^2=12*x^6+13*x^5+72*x^4+32*x^3+35*x^2+65*x+18", "y^2=31*x^6+46*x^5+45*x^4+43*x^3+33*x^2+74*x+50", "y^2=9*x^6+55*x^5+25*x^4+22*x^3+63*x^2+64*x+13", "y^2=18*x^6+3*x^5+29*x^4+31*x^3+22*x^2+19*x+50", "y^2=59*x^6+65*x^5+60*x^4+22*x^3+2*x^2+43*x+50", "y^2=34*x^6+60*x^5+19*x^4+2*x^3+45*x^2+14*x+76", "y^2=57*x^6+73*x^5+49*x^4+4*x^3+11*x^2+66*x+38", "y^2=66*x^6+2*x^5+26*x^4+44*x^3+17*x^2+15*x+74", "y^2=5*x^6+52*x^5+3*x^4+16*x^3+62*x^2+67*x+53", "y^2=2*x^6+75*x^5+29*x^4+62*x^3+28*x^2+14*x+43", "y^2=9*x^6+35*x^5+4*x^4+26*x^3+7*x^2+38*x+75", "y^2=70*x^6+77*x^5+48*x^4+56*x^3+18*x^2+9*x+8", "y^2=63*x^6+61*x^5+78*x^4+48*x^3+3*x^2+56*x+70", "y^2=8*x^6+56*x^5+17*x^4+75*x^3+68*x^2+68*x+18", "y^2=34*x^6+77*x^5+65*x^4+x^3+13*x^2+12*x+68", "y^2=74*x^6+4*x^5+77*x^4+62*x^3+18*x^2+30*x+57", "y^2=64*x^6+46*x^5+69*x^4+27*x^3+34*x^2+51*x+13"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 3, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.6089577.1"], "geometric_splitting_field": "4.0.6089577.1", "geometric_splitting_polynomials": [[2279, -108, 109, -2, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 144, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 144, "label": "2.79.ao_fz", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.6089577.1"], "p": 79, "p_rank": 2, "p_rank_deficit": 0, "pic_prime_gens": [[1, 3, 1, 2], [1, 17, 1, 9], [1, 23, 1, 36]], "poly": [1, -14, 155, -1106, 6241], "poly_str": "1 -14 155 -1106 6241 ", "primitive_models": [], "principal_polarization_count": 144, "q": 79, "real_poly": [1, -14, -3], "simple_distinct": ["2.79.ao_fz"], "simple_factors": ["2.79.ao_fzA"], "simple_multiplicities": [1], "singular_primes": ["2,-F^2-5*F-2*V+29"], "size": 144, "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.6089577.1", "splitting_polynomials": [[2279, -108, 109, -2, 1]], "twist_count": 2, "twists": [["2.79.o_fz", "2.6241.ek_ifb", 2]], "weak_equivalence_count": 3, "zfv_index": 16, "zfv_index_factorization": [[2, 4]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_pic_size": 72, "zfv_plus_index": 4, "zfv_plus_index_factorization": [[2, 2]], "zfv_plus_norm": 36033, "zfv_singular_count": 2, "zfv_singular_primes": ["2,-F^2-5*F-2*V+29"]}