Properties

Label 2.43.ac_aq
Base field $\F_{43}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{43}$
Dimension:  $2$
L-polynomial:  $1 - 2 x - 16 x^{2} - 86 x^{3} + 1849 x^{4}$
Frobenius angles:  $\pm0.176544417001$, $\pm0.745747127113$
Angle rank:  $2$ (numerical)
Number field:  4.0.8826688.1
Galois group:  $D_{4}$
Jacobians:  $68$
Isomorphism classes:  68

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1746$ $3355812$ $6292718442$ $11708468337744$ $21612461028382026$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $42$ $1814$ $79146$ $3424726$ $147015102$ $6321506582$ $271820183502$ $11688195338014$ $502592627249082$ $21611482134710534$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 68 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{43}$.

Endomorphism algebra over $\F_{43}$
The endomorphism algebra of this simple isogeny class is 4.0.8826688.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.43.c_aq$2$(not in LMFDB)