Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 2 x - 16 x^{2} - 86 x^{3} + 1849 x^{4}$ |
Frobenius angles: | $\pm0.176544417001$, $\pm0.745747127113$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.8826688.1 |
Galois group: | $D_{4}$ |
Jacobians: | $68$ |
Isomorphism classes: | 68 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1746$ | $3355812$ | $6292718442$ | $11708468337744$ | $21612461028382026$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $42$ | $1814$ | $79146$ | $3424726$ | $147015102$ | $6321506582$ | $271820183502$ | $11688195338014$ | $502592627249082$ | $21611482134710534$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 68 curves (of which all are hyperelliptic):
- $y^2=22 x^6+11 x^5+27 x^4+10 x^3+18 x^2+19 x+7$
- $y^2=7 x^6+41 x^5+19 x^4+10 x^3+26 x^2+24 x+7$
- $y^2=4 x^6+25 x^5+9 x^4+37 x^3+21 x^2+38 x+32$
- $y^2=26 x^6+29 x^5+24 x^4+4 x^3+20 x^2+2 x+3$
- $y^2=5 x^6+38 x^5+12 x^3+15 x^2+37 x+28$
- $y^2=15 x^6+34 x^5+29 x^4+18 x^3+17 x^2+6 x+4$
- $y^2=31 x^6+25 x^5+x^4+25 x^3+33 x^2+23 x+40$
- $y^2=26 x^6+15 x^5+35 x^4+11 x^3+31 x^2+21 x+24$
- $y^2=35 x^6+21 x^5+12 x^4+32 x^3+13 x^2+7 x+18$
- $y^2=10 x^6+21 x^5+40 x^4+12 x^3+8 x^2+37 x+23$
- $y^2=4 x^6+11 x^5+24 x^4+26 x^3+41 x^2+27 x+15$
- $y^2=x^6+2 x^5+15 x^4+39 x^3+24 x^2+34 x+8$
- $y^2=40 x^6+37 x^5+6 x^4+7 x^3+32 x^2+24 x+12$
- $y^2=32 x^6+33 x^5+30 x^4+36 x^3+29 x^2+20 x+33$
- $y^2=14 x^6+24 x^5+29 x^4+31 x^3+17 x^2+38 x+15$
- $y^2=23 x^6+22 x^5+26 x^4+14 x^3+32 x^2+27 x+20$
- $y^2=x^6+42 x^5+29 x^4+12 x^3+24 x^2+7 x+3$
- $y^2=16 x^6+24 x^5+6 x^4+2 x^3+33 x^2+41 x+25$
- $y^2=11 x^6+5 x^5+31 x^4+20 x^3+4 x^2+27 x+37$
- $y^2=26 x^6+23 x^5+3 x^4+17 x^3+10 x^2+13 x+2$
- and 48 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$The endomorphism algebra of this simple isogeny class is 4.0.8826688.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.43.c_aq | $2$ | (not in LMFDB) |