Properties

Label 2.29.c_e
Base field $\F_{29}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{29}$
Dimension:  $2$
L-polynomial:  $1 + 2 x + 4 x^{2} + 58 x^{3} + 841 x^{4}$
Frobenius angles:  $\pm0.296863202254$, $\pm0.785506549310$
Angle rank:  $2$ (numerical)
Number field:  4.0.968000.1
Galois group:  $D_{4}$
Jacobians:  $60$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $906$ $712116$ $598685706$ $502312384080$ $420535427971146$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $32$ $846$ $24548$ $710198$ $20502772$ $594815886$ $17249622688$ $500244983518$ $14507157326432$ $420707237280606$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 60 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{29}$.

Endomorphism algebra over $\F_{29}$
The endomorphism algebra of this simple isogeny class is 4.0.968000.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.29.ac_e$2$(not in LMFDB)