Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 2 x + 4 x^{2} + 58 x^{3} + 841 x^{4}$ |
Frobenius angles: | $\pm0.296863202254$, $\pm0.785506549310$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.968000.1 |
Galois group: | $D_{4}$ |
Jacobians: | $60$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $906$ | $712116$ | $598685706$ | $502312384080$ | $420535427971146$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $32$ | $846$ | $24548$ | $710198$ | $20502772$ | $594815886$ | $17249622688$ | $500244983518$ | $14507157326432$ | $420707237280606$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 60 curves (of which all are hyperelliptic):
- $y^2=21 x^6+14 x^5+6 x^4+x^3+18 x^2+8 x+14$
- $y^2=13 x^6+x^5+5 x^4+22 x^3+9 x^2+2 x+24$
- $y^2=2 x^6+14 x^5+6 x^4+9 x^3+5 x^2+27 x+21$
- $y^2=27 x^6+23 x^5+11 x^4+26 x^3+24 x^2+11$
- $y^2=9 x^6+4 x^5+13 x^4+24 x^3+12 x^2+7 x+19$
- $y^2=22 x^6+19 x^5+4 x^4+4 x^3+10 x^2+x+14$
- $y^2=15 x^6+2 x^5+2 x^4+4 x^3+22 x^2+22 x+11$
- $y^2=28 x^6+2 x^4+17 x^2+6 x+5$
- $y^2=17 x^6+x^5+14 x^4+11 x^3+27 x^2+22 x$
- $y^2=18 x^6+2 x^5+15 x^4+26 x^3+22 x^2+18 x+4$
- $y^2=17 x^5+18 x^4+28 x^3+6 x^2+17 x+22$
- $y^2=x^6+5 x^5+17 x^4+x^3+13 x^2+x+12$
- $y^2=6 x^6+10 x^5+17 x^4+x^3+6 x+24$
- $y^2=5 x^6+3 x^5+18 x^4+24 x^3+8 x^2+23 x+17$
- $y^2=8 x^6+26 x^5+11 x^4+5 x^3+24 x^2+27 x+5$
- $y^2=13 x^6+27 x^5+10 x^4+22 x^3+28 x^2+9 x+23$
- $y^2=18 x^6+16 x^5+13 x^4+2 x^3+15 x^2+11 x+14$
- $y^2=23 x^6+19 x^5+23 x^4+23 x^3+8 x^2+10 x+3$
- $y^2=25 x^6+26 x^5+22 x^4+21 x^3+21 x^2+14 x+24$
- $y^2=22 x^6+20 x^5+27 x^4+14 x^3+10 x^2+4 x+15$
- and 40 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29}$.
Endomorphism algebra over $\F_{29}$The endomorphism algebra of this simple isogeny class is 4.0.968000.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.29.ac_e | $2$ | (not in LMFDB) |