Properties

Label 2.97.e_cz
Base field $\F_{97}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{97}$
Dimension:  $2$
L-polynomial:  $( 1 - 9 x + 97 x^{2} )( 1 + 13 x + 97 x^{2} )$
  $1 + 4 x + 77 x^{2} + 388 x^{3} + 9409 x^{4}$
Frobenius angles:  $\pm0.348957653898$, $\pm0.729433148540$
Angle rank:  $2$ (numerical)
Jacobians:  $276$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $9879$ $89849505$ $833248285632$ $7839580008339225$ $73740596013966752079$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $102$ $9548$ $912978$ $88553524$ $8587128702$ $832969568126$ $80798298248910$ $7837433580918436$ $760231060584058386$ $73742412700395979868$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 276 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{97}$.

Endomorphism algebra over $\F_{97}$
The isogeny class factors as 1.97.aj $\times$ 1.97.n and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.97.aw_lz$2$(not in LMFDB)
2.97.ae_cz$2$(not in LMFDB)
2.97.w_lz$2$(not in LMFDB)