Invariants
Base field: | $\F_{97}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 9 x + 97 x^{2} )( 1 + 13 x + 97 x^{2} )$ |
$1 + 4 x + 77 x^{2} + 388 x^{3} + 9409 x^{4}$ | |
Frobenius angles: | $\pm0.348957653898$, $\pm0.729433148540$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $276$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9879$ | $89849505$ | $833248285632$ | $7839580008339225$ | $73740596013966752079$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $102$ | $9548$ | $912978$ | $88553524$ | $8587128702$ | $832969568126$ | $80798298248910$ | $7837433580918436$ | $760231060584058386$ | $73742412700395979868$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 276 curves (of which all are hyperelliptic):
- $y^2=53 x^6+85 x^5+4 x^4+33 x^3+4 x^2+85 x+53$
- $y^2=24 x^6+60 x^5+83 x^4+78 x^3+52 x^2+50 x+4$
- $y^2=12 x^6+68 x^5+89 x^4+80 x^3+41 x^2+45 x+7$
- $y^2=62 x^6+96 x^5+27 x^4+8 x^3+27 x^2+96 x+62$
- $y^2=57 x^6+80 x^5+39 x^4+81 x^3+44 x^2+24 x+52$
- $y^2=71 x^6+51 x^5+51 x^4+43 x^3+74 x^2+32 x+92$
- $y^2=5 x^6+65 x^5+18 x^4+6 x^3+82 x^2+84 x+21$
- $y^2=37 x^6+55 x^5+93 x^4+12 x^3+93 x^2+55 x+37$
- $y^2=14 x^6+25 x^5+58 x^4+50 x^3+63 x^2+23 x+2$
- $y^2=86 x^6+61 x^5+38 x^4+66 x^3+38 x^2+61 x+86$
- $y^2=53 x^6+29 x^5+6 x^4+40 x^3+66 x^2+86 x+55$
- $y^2=75 x^6+53 x^5+62 x^4+8 x^3+x^2+73 x+24$
- $y^2=2 x^6+55 x^5+4 x^4+83 x^3+19 x^2+29 x+95$
- $y^2=91 x^6+15 x^5+88 x^4+3 x^3+18 x^2+89 x+4$
- $y^2=96 x^6+87 x^5+90 x^4+55 x^3+52 x^2+88 x+2$
- $y^2=92 x^6+58 x^5+39 x^4+86 x^3+78 x^2+53 x+20$
- $y^2=9 x^6+76 x^5+90 x^4+45 x^3+65 x^2+79 x+74$
- $y^2=93 x^6+77 x^5+59 x^4+85 x^3+25 x^2+x+94$
- $y^2=79 x^6+12 x^5+3 x^4+34 x^3+76 x^2+39 x+85$
- $y^2=35 x^6+21 x^5+11 x^4+94 x^3+26 x^2+70 x+51$
- and 256 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$The isogeny class factors as 1.97.aj $\times$ 1.97.n and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.97.aw_lz | $2$ | (not in LMFDB) |
2.97.ae_cz | $2$ | (not in LMFDB) |
2.97.w_lz | $2$ | (not in LMFDB) |