L(s) = 1 | − 3-s − 7-s − 2·9-s − 4·17-s + 4·19-s + 21-s − 8·23-s − 6·25-s + 2·27-s + 12·29-s + 16·31-s + 4·37-s − 4·41-s − 8·47-s − 6·49-s + 4·51-s + 4·53-s − 4·57-s + 4·59-s − 8·61-s + 2·63-s − 8·67-s + 8·69-s + 20·73-s + 6·75-s + 8·79-s + 7·81-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.377·7-s − 2/3·9-s − 0.970·17-s + 0.917·19-s + 0.218·21-s − 1.66·23-s − 6/5·25-s + 0.384·27-s + 2.22·29-s + 2.87·31-s + 0.657·37-s − 0.624·41-s − 1.16·47-s − 6/7·49-s + 0.560·51-s + 0.549·53-s − 0.529·57-s + 0.520·59-s − 1.02·61-s + 0.251·63-s − 0.977·67-s + 0.963·69-s + 2.34·73-s + 0.692·75-s + 0.900·79-s + 7/9·81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4714942810\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4714942810\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.5501882732, −19.1551537949, −18.0743360042, −17.6857167880, −17.6707519500, −16.6272610009, −16.2852315391, −15.4732516475, −15.4132338247, −14.1819882616, −13.7774671320, −13.4509485366, −12.3172568607, −11.8414629768, −11.5820474614, −10.6022424461, −9.96467191573, −9.45734931342, −8.18842041768, −8.09899069409, −6.42897107073, −6.42262084814, −5.22316409435, −4.25303028693, −2.79183800613,
2.79183800613, 4.25303028693, 5.22316409435, 6.42262084814, 6.42897107073, 8.09899069409, 8.18842041768, 9.45734931342, 9.96467191573, 10.6022424461, 11.5820474614, 11.8414629768, 12.3172568607, 13.4509485366, 13.7774671320, 14.1819882616, 15.4132338247, 15.4732516475, 16.2852315391, 16.6272610009, 17.6707519500, 17.6857167880, 18.0743360042, 19.1551537949, 19.5501882732