Properties

Label 4-1344-1.1-c1e2-0-1
Degree $4$
Conductor $1344$
Sign $1$
Analytic cond. $0.0856946$
Root an. cond. $0.541051$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 7-s − 2·9-s − 4·17-s + 4·19-s + 21-s − 8·23-s − 6·25-s + 2·27-s + 12·29-s + 16·31-s + 4·37-s − 4·41-s − 8·47-s − 6·49-s + 4·51-s + 4·53-s − 4·57-s + 4·59-s − 8·61-s + 2·63-s − 8·67-s + 8·69-s + 20·73-s + 6·75-s + 8·79-s + 7·81-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.377·7-s − 2/3·9-s − 0.970·17-s + 0.917·19-s + 0.218·21-s − 1.66·23-s − 6/5·25-s + 0.384·27-s + 2.22·29-s + 2.87·31-s + 0.657·37-s − 0.624·41-s − 1.16·47-s − 6/7·49-s + 0.560·51-s + 0.549·53-s − 0.529·57-s + 0.520·59-s − 1.02·61-s + 0.251·63-s − 0.977·67-s + 0.963·69-s + 2.34·73-s + 0.692·75-s + 0.900·79-s + 7/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1344\)    =    \(2^{6} \cdot 3 \cdot 7\)
Sign: $1$
Analytic conductor: \(0.0856946\)
Root analytic conductor: \(0.541051\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1344,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4714942810\)
\(L(\frac12)\) \(\approx\) \(0.4714942810\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + p T^{2} ) \)
7$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + p T^{2} ) \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.5.a_g
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.11.a_g
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.13.a_w
17$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.17.e_w
19$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.19.ae_g
23$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.23.i_bu
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \) 2.29.am_dq
31$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \) 2.31.aq_ew
37$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.37.ae_ck
41$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.41.e_cs
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.43.a_cs
47$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.47.i_dq
53$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.53.ae_dq
59$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \) 2.59.ae_eo
61$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.61.i_fe
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \) 2.67.i_fu
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.71.a_da
73$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \) 2.73.au_jm
79$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.79.ai_be
83$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.83.ae_fe
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \) 2.89.m_ig
97$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.97.e_ha
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.5501882732, −19.1551537949, −18.0743360042, −17.6857167880, −17.6707519500, −16.6272610009, −16.2852315391, −15.4732516475, −15.4132338247, −14.1819882616, −13.7774671320, −13.4509485366, −12.3172568607, −11.8414629768, −11.5820474614, −10.6022424461, −9.96467191573, −9.45734931342, −8.18842041768, −8.09899069409, −6.42897107073, −6.42262084814, −5.22316409435, −4.25303028693, −2.79183800613, 2.79183800613, 4.25303028693, 5.22316409435, 6.42262084814, 6.42897107073, 8.09899069409, 8.18842041768, 9.45734931342, 9.96467191573, 10.6022424461, 11.5820474614, 11.8414629768, 12.3172568607, 13.4509485366, 13.7774671320, 14.1819882616, 15.4132338247, 15.4732516475, 16.2852315391, 16.6272610009, 17.6707519500, 17.6857167880, 18.0743360042, 19.1551537949, 19.5501882732

Graph of the $Z$-function along the critical line