Invariants
| Base field: | $\F_{37}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 6 x + 37 x^{2} )( 1 + 2 x + 37 x^{2} )$ |
| $1 - 4 x + 62 x^{2} - 148 x^{3} + 1369 x^{4}$ | |
| Frobenius angles: | $\pm0.335828188403$, $\pm0.552568456711$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $130$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1280$ | $2027520$ | $2577685760$ | $3510853632000$ | $4808817120646400$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $34$ | $1478$ | $50890$ | $1873294$ | $69347314$ | $2565680726$ | $94931034778$ | $3512480601886$ | $129961785257410$ | $4808584420966118$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 130 curves (of which all are hyperelliptic):
- $y^2=4 x^6+35 x^4+16 x^3+35 x^2+4$
- $y^2=32 x^6+15 x^5+x^4+27 x^3+4 x^2+18 x+13$
- $y^2=33 x^6+4 x^5+5 x^3+2 x^2+35 x+9$
- $y^2=12 x^6+10 x^5+3 x^4+14 x^3+18 x^2+36 x+21$
- $y^2=8 x^6+2 x^5+16 x^4+31 x^3+8 x^2+4 x+19$
- $y^2=14 x^6+x^5+2 x^4+30 x^3+7 x^2+9 x+16$
- $y^2=5 x^6+3 x^5+29 x^4+29 x^3+29 x^2+3 x+5$
- $y^2=28 x^6+7 x^5+6 x^4+17 x^3+2 x^2+9 x+12$
- $y^2=10 x^6+8 x^5+8 x^4+33 x^3+35 x^2+19 x+1$
- $y^2=3 x^6+29 x^5+36 x^4+11 x^3+36 x^2+26 x+5$
- $y^2=25 x^6+30 x^5+21 x^4+x^3+21 x^2+30 x+25$
- $y^2=27 x^6+2 x^5+x^4+34 x^3+27 x^2+31 x+17$
- $y^2=20 x^6+14 x^5+35 x^4+26 x^3+20 x^2+3 x+9$
- $y^2=35 x^6+35 x^5+8 x^4+13 x^3+11 x^2+24 x+15$
- $y^2=19 x^6+19 x^5+16 x^4+22 x^3+16 x^2+19 x+19$
- $y^2=24 x^6+28 x^5+9 x^3+31 x^2+10 x+30$
- $y^2=19 x^6+11 x^5+7 x^4+34 x^3+36 x^2+4 x+24$
- $y^2=21 x^5+31 x^4+26 x^3+31 x^2+4 x+22$
- $y^2=28 x^6+27 x^5+x^4+29 x^3+2 x^2+34 x+23$
- $y^2=26 x^6+15 x^5+27 x^4+6 x^3+34 x^2+14 x+25$
- and 110 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37}$.
Endomorphism algebra over $\F_{37}$| The isogeny class factors as 1.37.ag $\times$ 1.37.c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.