Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 6 x + 53 x^{2} )( 1 + 2 x + 53 x^{2} )$ |
$1 - 4 x + 94 x^{2} - 212 x^{3} + 2809 x^{4}$ | |
Frobenius angles: | $\pm0.364801829573$, $\pm0.543861900584$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $288$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2688$ | $8386560$ | $22228149888$ | $62227604275200$ | $174883788503749248$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $50$ | $2982$ | $149306$ | $7886414$ | $418186690$ | $22164315894$ | $1174709721802$ | $62259698551966$ | $3299763772800338$ | $174887470150733382$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 288 curves (of which all are hyperelliptic):
- $y^2=45 x^6+15 x^5+48 x^4+17 x^3+49 x^2+29 x+31$
- $y^2=39 x^6+44 x^5+12 x^4+11 x^3+50 x^2+6 x+3$
- $y^2=34 x^6+18 x^5+29 x^4+47 x^3+29 x^2+18 x+34$
- $y^2=50 x^6+13 x^5+47 x^4+6 x^2+31$
- $y^2=6 x^6+13 x^5+24 x^4+2 x^3+35 x^2+51 x+24$
- $y^2=20 x^6+51 x^5+41 x^4+21 x^3+49 x^2+43 x+28$
- $y^2=36 x^6+4 x^5+9 x^4+44 x^3+19 x^2+28 x+28$
- $y^2=28 x^6+52 x^5+4 x^4+21 x^2+47 x+38$
- $y^2=16 x^6+51 x^5+39 x^4+7 x^3+31 x^2+34 x+47$
- $y^2=36 x^6+26 x^5+21 x^4+12 x^3+21 x^2+12 x+12$
- $y^2=36 x^6+15 x^5+9 x^4+35 x^3+37 x^2+3 x+50$
- $y^2=22 x^6+47 x^5+x^3+46 x^2+14 x+28$
- $y^2=38 x^6+14 x^5+47 x^4+49 x^3+24 x^2+47 x+24$
- $y^2=42 x^6+26 x^5+44 x^4+29 x^3+11 x^2+27 x+50$
- $y^2=47 x^6+7 x^5+17 x^4+36 x^3+9 x^2+17 x+15$
- $y^2=31 x^6+28 x^5+43 x^4+40 x^3+11 x^2+43 x+23$
- $y^2=51 x^6+28 x^5+40 x^4+29 x^2+46 x+46$
- $y^2=4 x^6+26 x^5+7 x^4+43 x^3+29 x^2+19 x+29$
- $y^2=35 x^6+48 x^5+46 x^4+42 x^3+3 x^2+22 x+8$
- $y^2=21 x^6+42 x^5+3 x^4+13 x^3+3 x^2+42 x+21$
- and 268 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$The isogeny class factors as 1.53.ag $\times$ 1.53.c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.53.ai_eo | $2$ | (not in LMFDB) |
2.53.e_dq | $2$ | (not in LMFDB) |
2.53.i_eo | $2$ | (not in LMFDB) |