Invariants
Base field: | $\F_{19}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 8 x + 19 x^{2} )( 1 + 4 x + 19 x^{2} )$ |
$1 - 4 x + 6 x^{2} - 76 x^{3} + 361 x^{4}$ | |
Frobenius angles: | $\pm0.130073469147$, $\pm0.651731832911$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $44$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $288$ | $129024$ | $45559584$ | $17020846080$ | $6139978364448$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $16$ | $358$ | $6640$ | $130606$ | $2479696$ | $47043286$ | $893940784$ | $16984025566$ | $322687638160$ | $6131069428678$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 44 curves (of which all are hyperelliptic):
- $y^2=10 x^6+14 x^5+7 x^4+14 x^3+15 x^2+11$
- $y^2=11 x^6+x^5+8 x^4+17 x^3+10 x^2+2$
- $y^2=15 x^6+3 x^4+13 x^3+6 x^2+5 x+8$
- $y^2=9 x^6+11 x^5+13 x^3+9 x+4$
- $y^2=4 x^6+12 x^5+3 x^3+10 x^2+16 x$
- $y^2=x^5+12 x^4+13 x^2+15 x+16$
- $y^2=9 x^6+9 x^5+6 x^4+18 x^3+12 x^2+13 x+8$
- $y^2=16 x^6+x^5+5 x^4+9 x^3+11 x^2+9 x+14$
- $y^2=11 x^6+3 x^5+3 x^4+2 x^3+5 x^2+13 x+13$
- $y^2=12 x^6+12 x^5+9 x^4+2 x^3+14 x^2+3 x+15$
- $y^2=18 x^6+13 x^5+15 x^4+2 x^3+10 x^2+4 x+10$
- $y^2=2 x^5+16 x^4+16 x^3+5 x^2+16$
- $y^2=17 x^6+3 x^5+15 x^4+5 x^3+15 x^2+14 x$
- $y^2=9 x^6+7 x^5+3 x^4+17 x^3+7 x^2+8 x+13$
- $y^2=9 x^6+15 x^5+7 x^4+10 x^3+3 x^2+8 x+9$
- $y^2=10 x^6+12 x^5+17 x^4+14 x^3+13 x^2+17 x+9$
- $y^2=9 x^5+17 x^4+14 x^3+18 x^2+11 x+18$
- $y^2=12 x^6+18 x^5+17 x^4+5 x^3+17 x^2+18 x+12$
- $y^2=x^6+4 x^5+17 x^4+4 x^3+6 x^2+4 x+6$
- $y^2=15 x^6+7 x^5+15 x^4+4 x^2+14 x$
- and 24 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19}$.
Endomorphism algebra over $\F_{19}$The isogeny class factors as 1.19.ai $\times$ 1.19.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.