Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 2 x + 61 x^{2} )( 1 + 6 x + 61 x^{2} )$ |
$1 + 8 x + 134 x^{2} + 488 x^{3} + 3721 x^{4}$ | |
Frobenius angles: | $\pm0.540867587811$, $\pm0.625491882155$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $112$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4352$ | $14622720$ | $51239686400$ | $191618228551680$ | $713417516717050112$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $70$ | $3926$ | $225742$ | $13839406$ | $844684630$ | $51520376198$ | $3142738740190$ | $191707326362206$ | $11694146205191782$ | $713342910965055926$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 112 curves (of which all are hyperelliptic):
- $y^2=15 x^6+31 x^5+55 x^4+31 x^3+55 x^2+31 x+15$
- $y^2=28 x^6+60 x^5+30 x^4+30 x^2+60 x+28$
- $y^2=48 x^6+52 x^5+40 x^4+16 x^3+18 x^2+27 x+45$
- $y^2=52 x^6+47 x^5+17 x^4+42 x^3+9 x^2+35 x+54$
- $y^2=54 x^6+25 x^5+x^4+48 x^3+25 x^2+9 x+59$
- $y^2=47 x^6+34 x^5+13 x^4+13 x^3+19 x^2+47 x+49$
- $y^2=15 x^6+10 x^5+59 x^4+5 x^3+59 x^2+10 x+15$
- $y^2=13 x^6+30 x^5+14 x^4+18 x^3+28 x^2+30 x+10$
- $y^2=13 x^6+38 x^5+49 x^4+14 x^3+49 x^2+38 x+13$
- $y^2=8 x^6+26 x^5+36 x^4+32 x^3+3 x^2+40 x+37$
- $y^2=5 x^6+10 x^5+36 x^4+58 x^3+36 x^2+10 x+5$
- $y^2=5 x^6+4 x^5+23 x^4+14 x^3+23 x^2+4 x+5$
- $y^2=40 x^6+34 x^5+24 x^4+9 x^3+24 x^2+34 x+40$
- $y^2=22 x^6+41 x^5+44 x^4+53 x^3+7 x^2+46 x+56$
- $y^2=41 x^6+2 x^5+60 x^4+55 x^3+46 x^2+23 x+27$
- $y^2=43 x^6+58 x^5+59 x^4+20 x^3+55 x^2+34 x+2$
- $y^2=34 x^6+36 x^5+50 x^4+29 x^3+50 x^2+36 x+34$
- $y^2=22 x^6+26 x^5+38 x^4+17 x^3+38 x^2+26 x+22$
- $y^2=56 x^6+34 x^5+19 x^4+49 x^3+22 x^2+15 x+5$
- $y^2=46 x^6+28 x^5+16 x^4+11 x^3+16 x^2+28 x+46$
- and 92 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$The isogeny class factors as 1.61.c $\times$ 1.61.g and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.61.ai_fe | $2$ | (not in LMFDB) |
2.61.ae_eg | $2$ | (not in LMFDB) |
2.61.e_eg | $2$ | (not in LMFDB) |