Properties

Label 2-4160-1.1-c1-0-83
Degree $2$
Conductor $4160$
Sign $-1$
Analytic cond. $33.2177$
Root an. cond. $5.76348$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 5-s − 4·7-s + 9-s + 6·11-s − 13-s − 2·15-s − 6·17-s − 2·19-s − 8·21-s + 6·23-s + 25-s − 4·27-s + 6·29-s + 2·31-s + 12·33-s + 4·35-s − 2·37-s − 2·39-s − 6·41-s − 2·43-s − 45-s − 12·47-s + 9·49-s − 12·51-s − 6·53-s − 6·55-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.447·5-s − 1.51·7-s + 1/3·9-s + 1.80·11-s − 0.277·13-s − 0.516·15-s − 1.45·17-s − 0.458·19-s − 1.74·21-s + 1.25·23-s + 1/5·25-s − 0.769·27-s + 1.11·29-s + 0.359·31-s + 2.08·33-s + 0.676·35-s − 0.328·37-s − 0.320·39-s − 0.937·41-s − 0.304·43-s − 0.149·45-s − 1.75·47-s + 9/7·49-s − 1.68·51-s − 0.824·53-s − 0.809·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4160\)    =    \(2^{6} \cdot 5 \cdot 13\)
Sign: $-1$
Analytic conductor: \(33.2177\)
Root analytic conductor: \(5.76348\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4160,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
13 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.385892994426974387064320936714, −7.15031833255794122549807157204, −6.67646862518206244633880985882, −6.22915729835157443087981415258, −4.75317284270628420700819478225, −4.02757025612801301625618344495, −3.26724143545532321208050075563, −2.78007888158177502434541513722, −1.55547954514278666952931744266, 0, 1.55547954514278666952931744266, 2.78007888158177502434541513722, 3.26724143545532321208050075563, 4.02757025612801301625618344495, 4.75317284270628420700819478225, 6.22915729835157443087981415258, 6.67646862518206244633880985882, 7.15031833255794122549807157204, 8.385892994426974387064320936714

Graph of the $Z$-function along the critical line