Invariants
Base field: | $\F_{89}$ |
Dimension: | $1$ |
L-polynomial: | $1 + 6 x + 89 x^{2}$ |
Frobenius angles: | $\pm0.603010988689$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-5}) \) |
Galois group: | $C_2$ |
Jacobians: | $14$ |
Isomorphism classes: | 14 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $1$ |
Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $96$ | $8064$ | $703584$ | $62737920$ | $5584208736$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $96$ | $8064$ | $703584$ | $62737920$ | $5584208736$ | $496980779904$ | $44231324675424$ | $3936588912506880$ | $350356403976245856$ | $31181719918847992704$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 14 curves (of which 0 are hyperelliptic):
- $y^2=x^3+76 x+50$
- $y^2=x^3+57 x+57$
- $y^2=x^3+25 x+75$
- $y^2=x^3+67 x+67$
- $y^2=x^3+40 x+31$
- $y^2=x^3+80 x+80$
- $y^2=x^3+27 x+27$
- $y^2=x^3+77 x+77$
- $y^2=x^3+25 x+25$
- $y^2=x^3+74 x+44$
- $y^2=x^3+36 x+19$
- $y^2=x^3+35 x+35$
- $y^2=x^3+71 x+35$
- $y^2=x^3+81 x+81$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-5}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
1.89.ag | $2$ | (not in LMFDB) |