Properties

Label 2-248430-1.1-c1-0-202
Degree $2$
Conductor $248430$
Sign $-1$
Analytic cond. $1983.72$
Root an. cond. $44.5390$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s − 8-s + 9-s + 10-s + 4·11-s + 12-s − 15-s + 16-s − 18-s − 2·19-s − 20-s − 4·22-s − 4·23-s − 24-s + 25-s + 27-s + 2·29-s + 30-s + 6·31-s − 32-s + 4·33-s + 36-s + 4·37-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 1.20·11-s + 0.288·12-s − 0.258·15-s + 1/4·16-s − 0.235·18-s − 0.458·19-s − 0.223·20-s − 0.852·22-s − 0.834·23-s − 0.204·24-s + 1/5·25-s + 0.192·27-s + 0.371·29-s + 0.182·30-s + 1.07·31-s − 0.176·32-s + 0.696·33-s + 1/6·36-s + 0.657·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 248430 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 248430 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(248430\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1983.72\)
Root analytic conductor: \(44.5390\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 248430,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 \)
13 \( 1 \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.17216931525286, −12.39752296644618, −12.10237954486123, −11.71806603800074, −11.30750946563983, −10.60440303223458, −10.29660228715831, −9.722878049496351, −9.392056417884484, −8.790268648948303, −8.420241931735379, −8.127850939002356, −7.496235205436550, −7.050532682089233, −6.466612588088467, −6.270946231229695, −5.478365019307403, −4.790796805510307, −4.196584435689605, −3.794308260904494, −3.303314218858726, −2.510295530736198, −2.159625732825076, −1.329886073447998, −0.8948227119866757, 0, 0.8948227119866757, 1.329886073447998, 2.159625732825076, 2.510295530736198, 3.303314218858726, 3.794308260904494, 4.196584435689605, 4.790796805510307, 5.478365019307403, 6.270946231229695, 6.466612588088467, 7.050532682089233, 7.496235205436550, 8.127850939002356, 8.420241931735379, 8.790268648948303, 9.392056417884484, 9.722878049496351, 10.29660228715831, 10.60440303223458, 11.30750946563983, 11.71806603800074, 12.10237954486123, 12.39752296644618, 13.17216931525286

Graph of the $Z$-function along the critical line