Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 4 x + 61 x^{2}$ |
| Frobenius angles: | $\pm0.582428998760$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-57}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $4$ |
| Isomorphism classes: | 4 |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $66$ | $3828$ | $226314$ | $13842048$ | $844652226$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $66$ | $3828$ | $226314$ | $13842048$ | $844652226$ | $51520382100$ | $3142739393706$ | $191707326294528$ | $11694146249626434$ | $713342910224581428$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which 0 are hyperelliptic):
- $y^2=x^3+32 x+3$
- $y^2=x^3+13 x+13$
- $y^2=x^3+41 x+21$
- $y^2=x^3+45 x+29$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-57}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.61.ae | $2$ | (not in LMFDB) |